
eventsourcing Documentation
Release 9.0.2

John Bywater

Apr 15, 2021

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Installation guide . 4
1.3 Support options . 6
1.4 domain — Domain models . 7
1.5 application — Applications . 37
1.6 persistence — Infrastructure . 48
1.7 system — Event-driven systems . 66
1.8 interface — Interface . 73
1.9 Examples . 74
1.10 Release notes . 92

2 Modules Reference 101

Python Module Index 103

Index 105

i

ii

eventsourcing Documentation, Release 9.0.2

A library for event sourcing in Python. This project is hosted on GitHub.

Contents 1

https://github.com/johnbywater/eventsourcing

eventsourcing Documentation, Release 9.0.2

2 Contents

CHAPTER 1

Contents

1.1 Introduction

1.1.1 What is event sourcing?

One definition of event sourcing suggests the state of an event-sourced application is determined by a sequence of
events. Another definition has event sourcing as a persistence mechanism for domain-driven design.

Whilst the basic event sourcing patterns are quite simple and can be reproduced in code for each project, event sourcing
as a persistence mechanism for domain-driven design appears as a “conceptually cohesive mechanism” and so can be
partitioned into a “separate lightweight framework”.

Quoting from Eric Evans’ book Domain-Driven Design:

“Partition a conceptually COHESIVE MECHANISM into a separate lightweight framework. Particularly
watch for formalisms for well-documented categories of algorithms. Expose the capabilities of the frame-
work with an INTENTION-REVEALING INTERFACE. Now the other elements of the domain can focus
on expressing the problem (‘what’), delegating the intricacies of the solution (‘how’) to the framework.”

1.1.2 This library

This is a library for event sourcing in Python. At its core, this library supports storing and retrieving sequences of
events, such as the domain events of event-sourced aggregates in a domain-driven design, and snapshots of those
aggregates. A variety of schemas and technologies can be used for storing events, and this library supports several of
these possibilities.

To demonstrate how storing and retrieving domain events can be used effectively as a persistence mechanism in an
event-sourced application, this library includes base classes and examples of event-sourced aggregates and event-
sourced applications.

It is possible using this library to define an entire event-driven system of event-sourced applications independently
of infrastructure and mode of running. That means system behaviours can be rapidly developed whilst running the
entire system synchronously in a single thread with a single in-memory database. And then the system can be run
asynchronously on a cluster with durable databases, with the system effecting exactly the same behaviour.

3

https://en.wikipedia.org/wiki/Domain-driven_design

eventsourcing Documentation, Release 9.0.2

1.1.3 Features

Flexible event store — flexible persistence of domain events. Combines an event mapper and an event recorder in
ways that can be easily extended. Mapper uses a transcoder that can be easily extended to support custom model object
types. Recorders supporting different databases can be easily substituted and configured with environment variables.

Domain models and applications — base classes for domain model aggregates and applications. Suggests how to
structure an event-sourced application.

Application-level encryption and compression — encrypts and decrypts events inside the application. This means
data will be encrypted in transit across a network (“on the wire”) and at disk level including backups (“at rest”), which
is a legal requirement in some jurisdictions when dealing with personally identifiable information (PII) for example
the EU’s GDPR. Compression reduces the size of stored domain events and snapshots, usually by around 25% to 50%
of the original size. Compression reduces the size of data in the database and decreases transit time across a network.

Snapshotting — reduces access-time for aggregates with many domain events.

Versioning - allows domain model changes to be introduced after an application has been deployed. Both domain
events and aggregate classes can be versioned. The recorded state of an older version can be upcast to be compatible
with a new version. Stored events and snapshots are upcast from older versions to new versions before the event or
aggregate object is reconstructed.

Optimistic concurrency control — ensures a distributed or horizontally scaled application doesn’t become inconsis-
tent due to concurrent method execution. Leverages optimistic concurrency controls in adapted database management
systems.

Notifications and projections — reliable propagation of application events with pull-based notifications allows the
application state to be projected accurately into replicas, indexes, view models, and other applications. Supports
materialized views and CQRS.

Event-driven systems — reliable event processing. Event-driven systems can be defined independently of particular
persistence infrastructure and mode of running.

Detailed documentation — documentation provides general overview, introduction of concepts, explanation of usage,
and detailed descriptions of library classes.

Worked examples — includes examples showing how to develop aggregates, applications and systems.

1.1.4 Design overview

The design of the library follows the notion of a “layered architecture” in that there are distinct and separate layers for
interfaces, application, domain, and infrastructure. It also follows the “onion” or “hexagonal” or “clean” architecture,
in that the domain layer has no dependencies on any other layer. The application layer depends on the domain and
infrastructure layers, and the interface layer depends only on the application layer.

1.1.5 Register issues

This project is hosted on GitHub. Please register any issues, questions, and requests you may have.

1.2 Installation guide

This version of the library is compatible with Python versions 3.7, 3.8, and 3.9.

It is recommended always to install into a virtual environment.

You can use pip to install the library from the Python Package Index.

4 Chapter 1. Contents

domain.html
application.html
persistence.html
https://github.com/johnbywater/eventsourcing
https://github.com/johnbywater/eventsourcing/issues
https://pypi.org/project/eventsourcing/

eventsourcing Documentation, Release 9.0.2

$ pip install eventsourcing

When including the library in a list of project dependencies, in order to avoid installing future incompatible releases,
it is recommended to specify the major and minor version numbers.

As an example, the expression below would install the latest version of the v9.0.x release, allowing future bug fixes
released with point version number increments.

eventsourcing<=9.0.99999

Specifying the major and minor version number in this way will avoid any potentially destabilising additional features
introduced with minor version number increments, and also any backwards incompatible changes introduced with
major version number increments.

This package depends only on modules from the Python Standard Library, except for the extra options described
below.

The library’s suite of tests is run against these versions and has 100% line and branch coverage.

1.2.1 Install options

Running the install command with different options will install the extra dependencies associated with that option. If
you installed without any options, you can easily install optional dependencies later by running the install command
again with the options you want.

For example, if you want to store cryptographically encrypted events, then install with the crypto option. This
simply installs PyCryptodome so feel free to make your project depend on that instead.

$ pip install "eventsourcing[crypto]"

If you want to store events with PostgreSQL, then install with the postgres option. This simply installs Psycopg2
so feel free to make your project depend on that instead. Please note, the binary version psycopg2-binary is a conve-
nient alternative for development and testing, but the main package is recommended by the Psycopg2 developers for
production usage.

$ pip install "eventsourcing[postgres]"

Options can be combined, so that if you want to store encrypted events in PostgreSQL, then install with the crypto
and postgres options.

$ pip install "eventsourcing[crypto,postgres]"

1.2.2 Developers

If you want to install the code for the purpose of developing the library, then fork and clone the GitHub repository
and install from the root folder with the ‘dev’ option. This option will install a number of packages that help with
development and documentation, such as the above extra dependencies along with Sphinx, Coverage.py, Black, mypy,
Flake8, and isort.

$ pip install ".[dev]"

Alternatively, the project’s Makefile can be used to the same effect with the following command.

$ make install

1.2. Installation guide 5

https://pypi.org/project/pycryptodome/
https://pypi.org/project/psycopg2/
https://pypi.org/project/psycopg2-binary/

eventsourcing Documentation, Release 9.0.2

Once installed, you can check the unit tests pass and the code is 100% covered by the tests with the following com-
mand.

$ make test

Before the tests will pass, you will need setup PostgreSQL. The following commands will install PostgreSQL on
MacOS and setup the database and database user. If you already have PostgreSQL installed, just create the database
and user. If you prefer to run PostgreSQL in a Docker container, feel free to do that too.

$ brew install postgresql
$ brew services start postgresql
$ psql postgres
postgres=# CREATE DATABASE eventsourcing;
postgres=# CREATE USER eventsourcing WITH PASSWORD 'eventsourcing';

You can also check the syntax and static types are correct with the following command (which uses isort, Black,
Flake8, and mypy).

$ make lint

The code can be automatically reformatted using the following command (which uses isort and Black). Flake8 errors
may need to be fixed by hand.

$ make fmt

You can build the docs, and make sure they build, with the following command (which uses Sphinx).

$ make docs

If you wish to submit changes to the library, before submitting a pull request please check all three things (lint, docs,
and test) which you can do conveniently with the following command.

$ make prepush

If you wish to submit a pull request on GitHub, please target the develop branch. Improvements of any size are always
welcome.

1.3 Support options

I’m very grateful for your interest in this library. It has taken quite a lot of time to create this library. Similarly, it may
take some time to understand the library and develop well-designed event-sourced applications.

To supplement the detailed documentation, professional training workshops and development services are available.
Friendly community support is also available on the Slack channel.

Please support the continuing development and maintenance of this library by starring the project on GitHub and if
possible by making a regular donation. If you have any issues using the library or reading the documentation, please
raise an issue on GitHub, feel free to start a discussion in the Slack channel, or create a pull request.

1.3.1 Professional support

Design and development services are available to help developers and managers with the development and manage-
ment of their event-sourced applications and systems.

• Development of working applications and systems for production use.

6 Chapter 1. Contents

https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY\T1\textgreater {}{}`__.
https://github.com/johnbywater/eventsourcing
https://github.com/johnbywater/eventsourcing/issues
https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY\T1\textgreater {}{}`__.

eventsourcing Documentation, Release 9.0.2

• Development of sample applications and systems for guidance or demonstration purposes.

• Overall assessment of your existing implementation, with recommendations for improvement.

• Address specific concerns with how your event-sourced application or system is built and run.

• Coaching developers in the use of the library.

Please contact John Bywater via the Slack channel for more information about professional support.

1.3.2 Training workshops

Training workshops are available to help developers more quickly learn how to use the library. Workshop participants
will be guided through a series of topics, gradually discovering what the library is capable of doing, and learning how
to use the library effectively.

Please contact John Bywater via the Slack channel for more information about training workshops.

1.3.3 Community support

The library has a growing community that may be able to help.

• You can ask questions on the Slack channel.

• You can also register issues and requests on our issue tracker.

1.3.4 Support the project

Please follow the Sponsor button on the GitHub project for options.

1.4 domain — Domain models

This module helps with developing event-sourced domain models.

An event-sourced domain model has many event-sourced aggregates. The state of an event-sourced aggregate is
determined by a sequence of domain events. The time needed to reconstruct an aggregate from its domain events can
be reduced by using snapshots.

1.4.1 Aggregates in DDD

Aggregates are enduring objects which enjoy adventures of change. The book Domain-Driven Design by Eric Evans’
describes a design pattern called “aggregate” in the following way.

“An aggregate is a cluster of associated objects that we treat as a unit for the purpose of data changes.
Each aggregate has a root and a boundary. . .

Therefore. . .

Cluster the entities and value objects into aggregates and define boundaries around each. Choose one
entity to be the root of each aggregate, and control all access to the objects inside the boundary through
the root. Allow external objects to hold references to the root only.”

1.4. domain — Domain models 7

https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY\T1\textgreater {}{}`__.
https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY\T1\textgreater {}{}`__.
https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY\T1\textgreater {}{}`__.
https://github.com/johnbywater/eventsourcing/issues
https://github.com/johnbywater/eventsourcing

eventsourcing Documentation, Release 9.0.2

An aggregate is a cluster of ‘entities’ and ‘value objects’. An entity is an object with a fixed unique identity and other
attributes that may vary. A value object does not vary, and does not necessarily have a unique identity. This basic
notion of a cluster of software objects is understandable as straightforward object-oriented programming.

An aggregate has a ‘root’. The ‘root’ of an aggregate is an entity. This entity is known as the ‘root entity’ or the
‘aggregate root’. Entities have IDs and the ID of the root entity is used to uniquely identify the cluster of objects in a
domain model. Access to the cluster of objects is made through the root entity.

Changes to the cluster of objects are made using ‘command methods’ defined on the root entity, and the state of the
cluster of objects is obtained by using either ‘query methods’ or properties of the root entity. The idea of distinguishing
between command methods (methods that change state but do not return values) and query methods (methods that
return values but do not change state) is known as ‘command-query separation’ or CQS. CQS was devised by Bertrand
Meyer and described in his book Object Oriented Software Construction.

The ‘boundary’ of the aggregate is defined by the extent of the cluster of objects. The ‘consistency’ of the cluster
of objects is maintaining by making sure all the changes that result from a single command are recorded atomically.
There is only ever one cluster of objects for any given aggregate, so there is no branching, and the atomic changes have
a serial order. These two notions of ‘consistency’ and ‘boundary’ are combined in the notion in Domain-Driven Design
of ‘consistency boundary’. Whilst we can recognise the cluster of objects as basic object-orientated programming, and
we can recognise the use of command and query methods as the more refined pattern called CQS, the ‘consistency
boundary’ notion gives to the aggregates in Domain-Driven Design their distinctive character.

1.4.2 Event-sourced aggregates

It is in the Zen of Python that explicit is better than implicit. The changes to an aggregate’s cluster of objects will
always follow from decisions made by the aggregate, but these decisions had not been directly expressed as objects. It
will always be true that a decision itself does not change, but this fact had not been directly expressed.

“Explicit is better than implicit.”

To make things explicit, the decisions made in the command methods of an aggregate can be coded and recorded as
a sequence of immutable ‘domain event’ objects, and this sequence can be used to evolve the aggregate’s cluster of
entities and value objects. Event-sourced aggregates make these things explicit. For each event-sourced aggregate,
there is a sequence of domain event objects, and the state of an event-sourced aggregate is determined by its sequence
of domain event objects. The state of an aggregate can change, and its sequence of domain events can be augmented.
But once created the individual domain event objects do not change. They are what they are. The notion of ‘change’
is the contrast between successive domain events in an aggregate’s sequence (contrasted from the standpoint of the
cluster of objects within an aggregate’s consistency boundary, which is a standpoint that may change since there must
be a function that applies the events to the cluster, and this function can be adjusted. Hence it isn’t strictly true to say
that the state of an aggregate is determined by a sequence of events. The events merely contribute determination, and
the state is in fact determined by a combination of the sequence of events and a function that constructs that state from
those events, but I digress. . .)

The state of an aggregate, event-sourced or not, is changed by calling its command methods. In an event-sourced
aggregate, the command methods create new domain event objects. The domain events are used to evolve the state of
the aggregate. By evolving the state of the aggregate via creating and applying domain events, the domain events can
be recorded and used in future to reconstruct the state of the aggregate.

One command may result in many new domain event objects, and a single client request may result in the execution
of many commands. To maintain consistency in the domain model, all the domain events triggered by responding to
a single client request must be recorded atomically in the order they were created, otherwise the recorded state of the
aggregate may become inconsistent with respect to that which was desired or expected.

8 Chapter 1. Contents

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://www.python.org/dev/peps/pep-0020/

eventsourcing Documentation, Release 9.0.2

Aggregate base class

This library’s Aggregate class is a base class for event-sourced aggregates. It can be imported from the library’s
eventsourcing.domain module.

from eventsourcing.domain import Aggregate

The Aggregate base class can be used to develop event-sourced aggregates. See for example the World aggregate
in the basic example below. The Aggregate base class has three methods which can be used by subclasses:

• the class method _create() is used to create aggregate objects;

• the object method trigger_event() is used to trigger subsequent events; and

• the object method collect_events() is used to collect aggregate events that have been triggered.

These methods are explained below.

Creating new aggregates

Firstly, the Aggregate class has a “private” class method _create() which can be used to create a new aggregate.
It works by creating the first of a new sequence of domain event objects, and uses this domain event object to construct
and initialise an instance of the aggregate class. Usually, this “private” method will be called by a “public” class
method defined on a subclass of the Aggregate base class. For example, see the class method create() of the
World aggregate class in the basic example below.

The _create() method has a required positional argument event_class which is used by the caller to pass a
domain event class that will represent the fact that an aggregate was “created”. A domain event object of this type
will be constructed by this method, and this domain event object will be used to construct and initialise an aggregate
object. This method will then return that aggregate object. The _create() method also has a required id argument
which should be a Python UUID object that will be used to uniquely identify the aggregate in the domain model.

from uuid import uuid4

aggregate_id = uuid4()

aggregate = Aggregate._create(Aggregate.Created, id=aggregate_id)

The library’s Aggregate base class is defined with a nested class Created which can be used to represent the fact
that an aggregate was “created”. The Created class is defined as a frozen Python data class with four attributes:
the ID of an aggregate, a version number, a timestamp, and the topic of an aggregate class — see the Domain events
section below for more information. Except for the ID which is passed as the id argument to the _create()
method, the values of these other attributes are worked out by the _create() method. The Created class can be
used directly, but is normally subclassed to define a particular “created” event class for a particular aggregate class,
with a suitable name and with suitable extra attributes that represent the particular beginning of a particular type of
aggregate. A “created” event class should be named using a past participle that describes the beginning of something,
such as “Started”, “Opened”, or indeed “Created”.

The _create() method also accepts arbitrary keyword-only arguments, which if given will also be used to construct
the event object in addition to those mentioned above. The “created” event object will be constructed with these
additional arguments, and so the extra method arguments must be matched by the attributes of the “created” event
class. (The concrete aggregate class’s initializer method __init__() should also be coded to accept these extra
arguments.)

Having been created, an aggregate object will have an aggregate ID. The ID is presented by its id property. The ID
will be identical to the value passed with the id argument to the _create() method.

1.4. domain — Domain models 9

https://docs.python.org/3/library/dataclasses.html

eventsourcing Documentation, Release 9.0.2

assert aggregate.id == aggregate_id

A new aggregate instance has a version number. The version number is presented by its version property, and is a
Python int. The initial version of a newly created aggregate is always 1.

assert aggregate.version == 1

A new aggregate instance has a created_on property which gives the date and time when an aggregate object
was created, and is determined by the timestamp attribute of the first event in the aggregate’s sequence, which is the
“created” event. It is a Python datetime object.

from datetime import datetime

assert isinstance(aggregate.created_on, datetime)

A new aggregate instance also has a modified_on property which gives the date and time when an aggregate object
was last modified, and is determined by the timestamp attribute of the last event in the aggregate’s sequence. It is also
a Python datetime object.

from datetime import datetime

assert isinstance(aggregate.modified_on, datetime)

Initially, since there is only one event in the aggregate’s sequence, the created_on and modified_on values are
identical, and equal to the timestamp of the “created” event.

assert aggregate.created_on == aggregate.modified_on

Triggering subsequent events

Secondly, the Aggregate class has a method trigger_event() which can be called to create subsequent ag-
gregate event objects and apply them to the aggregate. This method is usually called by the command methods of an
aggregate to express the decisions that it makes. For example, see the make_it_so() method of the World class
in the basic example below.

The trigger_event() method has a positional argument event_class, which is used to pass the type of
aggregate event to be triggered.

from eventsourcing.domain import AggregateEvent

aggregate.trigger_event(AggregateEvent)

The Aggregate class has a nested Event class. It is defined as a frozen Python data class with three attributes:
the ID of an aggregate, a version number, and a timestamp. It can be used as a base class to define aggregate
event classes. The Created event class discussed above is a subclass of Event. For another example, see the
SomethingHappened class in the basic example below. Aggregate event classes are usually named using past
participles to describe what was decided by the command method, such as “Done”, “Updated”, “Closed”, etc. See the
Domain events section below for more information about aggregate event classes. They can be defined on aggregate
classes as nested classes.

The trigger_event() method also accepts arbitrary keyword-only arguments, which will be used to construct the
aggregate event object. As with the _create() method described above, the event object will be constructed with
these arguments, and so any extra arguments must be matched by the expected values of the event class. For example
what: str on the SomethingHappened event class in the basic example below matches the what=what
keyword argument passed in the call to the trigger_event() method in the make_it_so() command.

10 Chapter 1. Contents

https://docs.python.org/3/library/dataclasses.html

eventsourcing Documentation, Release 9.0.2

The version will be incremented by 1 for each event that is triggered.

assert aggregate.version == 2

After triggering a second event, the modified time will be greater than the created time.

assert aggregate.modified_on > aggregate.created_on

Collecting pending events

Thirdly, the Aggregate class has a “public” object method collect_events() which can be called to collect
the aggregate events that have been created but since either the last call to this method or since the aggregate object
was constructed. This method is called without any arguments.

from eventsourcing.domain import AggregateCreated

pending_events = aggregate.collect_events()

assert len(pending_events) == 2

assert isinstance(pending_events[0], AggregateCreated)
assert pending_events[0].originator_id == aggregate.id
assert pending_events[0].originator_version == 1
assert pending_events[0].timestamp == aggregate.created_on

assert isinstance(pending_events[1], AggregateEvent)
assert pending_events[1].originator_id == aggregate.id
assert pending_events[1].originator_version == 2
assert pending_events[1].timestamp == aggregate.modified_on

1.4.3 Basic example

In the example below, the World aggregate is a subclass of the library’s base Aggregate class. The __init__()
method extends the super class method and initialises a history attribute with an empty Python list object.

The create() method is a class method that creates and returns a new World aggregate object. It calls the base
class _create() method. It uses its Created event class as the value of the event_class argument. It uses
a version 4 UUID object as the value of the id argument. (See the Namespaced IDs section below for a discussion
about using version 5 UUIDs.)

The make_it_so() method is a command method that triggers a World.SomethingHappened domain event.
It calls the base class trigger_event() method. The event is triggered with the method argument what.

from eventsourcing.domain import Aggregate

class World(Aggregate):
def __init__(self):

self.history = []

@classmethod
def create(cls):

return cls._create(cls.Created, id=uuid4())

class Created(AggregateCreated):
(continues on next page)

1.4. domain — Domain models 11

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

pass

def make_it_so(self, what):
self.trigger_event(self.SomethingHappened, what=what)

class SomethingHappened(AggregateEvent):
what: str

def apply(self, world):
world.history.append(self.what)

The nested Created class is defined as a subclass of the base aggregate Created class. Although in this simple
example this World.Created event class carries no more attributes than the base class event that it inherits, it’s
always worth defining all event classes on the concrete aggregate class itself in case these classes need to be modified
so that old instances can be upcast to new versions (see Versioning). The name of an event class should express your
project’s ubiquitous language, take the grammatical form of a past participle (either regular or irregular), and describe
the type of decision represented by the event class.

The nested SomethingHappened class is a frozen data class that extends the base aggregate event class
Aggregate.Event (also a frozen data class) with a field what which is defined as a Python str. An apply()
method is defined which appends the what value to the aggregate’s history. This method is called when the event
is triggered (see Domain events).

By defining the event class under the command method which triggers it, and then defining an apply() method as part
of the event class definition, the story of calling a command method, triggering an event, and evolving the state of the
aggregate is expressed neatly in three parts.

Having defined the World aggregate class, we can create a new World aggregate object by calling the World.
create() class method.

world = World.create()

assert isinstance(world, World)

The aggregate’s attributes created_on and modified_on show when the aggregate was created and when it
was modified. Since there has only been one domain event, these are initially equal. The values of these attributes
are timezone-aware Python datetime objects. These values follow from the timestamp values of the domain
event objects, and represent when the aggregate’s first and last domain events were created. The timestamps have no
consequences for the operation of the library, and are included to give a general indication to humans of when the
domain events occurred.

from datetime import datetime

assert world.created_on == world.modified_on
assert isinstance(world.created_on, datetime)

We can call the aggregate object methods. The World aggregate has a command method make_it_so() which
triggers the SomethingHappened event. The apply() method of the SomethingHappened class appends the
what of the event to the history of the world. So when we call the make_it_so() command, the argument
what will be appended to the history.

Commands methods trigger events.
world.make_it_so("dinosaurs")
world.make_it_so("trucks")
world.make_it_so("internet")

(continues on next page)

12 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

State of aggregate object has changed.
assert world.history[0] == "dinosaurs"
assert world.history[1] == "trucks"
assert world.history[2] == "internet"

Now that more than one domain event has been created, the aggregate’s modified_on value is greater than its
created_on value.

assert world.modified_on > world.created_on

The resulting domain events are now held internally in the aggregate in a list of pending events, in the
pending_events attribute. The pending events can be collected by calling the aggregate’s collect_events()
method. These events are pending to be saved, and indeed the library’s application object has a save()method which
works by calling this method. So far, we have created four domain events and we have not yet collected them, and so
there will be four pending events: one Created event, and three SomethingHappened events.

Has four pending events.
assert len(world.pending_events) == 4

Collect pending events.
pending_events = world.collect_events()
assert len(pending_events) == 4
assert len(world.pending_events) == 0

assert isinstance(pending_events[0], World.Created)
assert isinstance(pending_events[1], World.SomethingHappened)
assert isinstance(pending_events[2], World.SomethingHappened)
assert isinstance(pending_events[3], World.SomethingHappened)
assert pending_events[1].what == "dinosaurs"
assert pending_events[2].what == "trucks"
assert pending_events[3].what == "internet"

assert pending_events[0].timestamp == world.created_on
assert pending_events[3].timestamp == world.modified_on

1.4.4 Domain events

Domain events are created but do not change. They are uniquely identifiable in a domain model by a aggregate ID
which identifies the sequence to which they belong and and a version number which determines their position in that
sequence.

The library’s DomainEvent class is a base class for domain events. It is defined as a frozen data class with an
originator_id attribute which is a Python UUID that holds an aggregate ID and identifies the sequence to which
a domain event object belongs, an originator_version attribute which is a Python int that holds the version
of an aggregate and determines the position of a domain event object in its sequence, and a timestamp attribute
which is a Python datetime that represents when the event was created.

The timestamps have no consequences for the operation of the library. The aggregate events objects are ordered in
their sequence by their version numbers, and not by their timestamps. The timestamps exist only to give a general
indication to humans of when things occurred.

The library’s DomainEvent class is used (inherited) by the aggregate Event class. The library’s Snapshot class
also inherits from the DomainEvent class — see Snapshots for more information about snapshots. The aggre-
gate Event class is defined as a subclass of the domain event base class DomainEvent. Aggregate event objects
represent original decisions by a domain model that advance the state of an application.

1.4. domain — Domain models 13

eventsourcing Documentation, Release 9.0.2

The aggregate Event class has a method mutate() which adjusts the state of an aggregate. It has an optional
argument aggregate which is used to pass the aggregate object to which the domain event object pertains into the
method when it is called. It returns an optional aggregate object, and the return value can be passed in when calling
this method on another event object. An initial “created” event can construct an aggregate object, a subsequent event
can receive and return an aggregate, and a final “discarded” event can receive an aggregate and return None. The
mutate() methods of a sequence of aggregate events can be used to reconstruct a copy of the original aggregate
object. And indeed the application repository object has a get() method which works by calling these methods.

copy = None
for domain_event in pending_events:

copy = domain_event.mutate(copy)

assert isinstance(copy, World)
assert copy.id == world.id
assert copy.version == world.version
assert copy.created_on == world.created_on
assert copy.modified_on == world.modified_on
assert copy.history == world.history

The aggregate Event class has a method apply(). Like the mutate() method, it also has an argument
aggregate which is used to pass the aggregate object to which the domain event object pertains into the method
when it is called. The mutate() method calls the event’s apply() method before it returns. The base class
apply() method body is empty, and so this method can be simply overridden (implemented without a call to the
superclass method). It is also not expected to return a value (any value that it does return will be ignored). Hence this
method can be simply and conveniently implemented in aggregate event classes to apply the event attribute values to
the aggregate.

The mutate() and apply() methods of aggregate events effectively implement the “aggregate projection”, which
means the function by which the events are processed to reconstruct the state of the aggregate. An alternative to use
apply() methods on the event classes is to define apply methods on the aggregate class. A base Event class can
be defined on the aggregate class which simply calls an apply() method on the aggregate class. This aggregate
apply() method can be decorated with the @singledispatchmethod decorator, and then event-specific meth-
ods can be defined and registered that will apply the events to the aggregate. See the Cargo aggregate of the Cargo
Shipping example for details. A further alternative is to use the declarative syntax.

The aggregate Created class represents the creation of an aggregate object instance. It is defined as a frozen data
class that extends the base class Event with its attribute originator_topic which is Python str. The value
of this attribute will be a topic that describes the path to the aggregate instance’s class. It has a mutate() method
which constructs an aggregate object after resolving the originator_topic value to an aggregate class. It does
not call apply() since the aggregate class __init__() method receives the “created” event attribute values and
can fully initialise the aggregate object.

Domain event objects are usually created by aggregate methods, as part of a sequence that determines the state
of an aggregate. The attribute values of new event objects are decided by these methods before the event is cre-
ated. For example, the aggregate’s _create() method uses the given value of its id argument as the new event’s
originator_id. It sets the originator_version to the value of 1. It derives the originator_topic
value from the aggregate class. And it calls Python’s datetime.now() to create the timestamp value.

Similarly, the aggregate trigger_event()method uses the id attribute of the aggregate as the originator_id
of the new domain event. It uses the current aggregate version to create the next version number (by adding 1) and
uses this value as the originator_version of the new domain event. It calls datetime.now() to create the
timestamp value of the new domain event.

The timestamp values are “timezone aware” datetime objects. The default timezone is UTC, as defined by Python’s
datetime.timezone.utc. It is recommended to store date-times as UTC values, and convert to a local timezone
in the interface layer according to the particular timezone of a particular user. However, if necessary, this default can
be changed either by assigning a datetime.tzinfo object to the TZINFO attribute of the eventsourcing.

14 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

domain module. The eventsourcing.domain.TZINFO value can also be configured using environment
variables, by setting the environment variable TZINFO_TOPIC to a string that describes the topic of a Python
datetime.tzinfo object (for example 'datetime:timezone.utc').

1.4.5 Snapshots

Snapshots speed up aggregate access time, by avoiding the need to retrieve and apply all the domain events when
reconstructing an aggregate object instance. The library’s Snapshot class can be used to create and restore snapshots
of aggregate object instances. See Snapshotting in the application module documentation for more information about
taking snapshots in an event-sourced application.

The Snapshot class is defined as a subclass of the domain event base class DomainEvent. It is defined as a frozen
data class and extends the base class with attributes topic and state, which hold the topic of an aggregate object
class and the current state of an aggregate object.

from eventsourcing.domain import Snapshot

The class method take() can be used to create a snapshot of an aggregate object.

snapshot = Snapshot.take(world)

assert isinstance(snapshot, Snapshot)
assert snapshot.originator_id == world.id
assert snapshot.originator_version == world.version
assert snapshot.topic == "__main__:World", snapshot.topic
assert snapshot.state["history"] == world.history
assert snapshot.state["_created_on"] == world.created_on
assert snapshot.state["modified_on"] == world.modified_on
assert len(snapshot.state) == 3

A snapshot’s mutate() method can be used to reconstruct its aggregate object instance.

copy = snapshot.mutate(None)

assert isinstance(copy, World)
assert copy.id == world.id
assert copy.version == world.version
assert copy.created_on == world.created_on
assert copy.modified_on == world.modified_on
assert copy.history == world.history

The signature of the mutate() method is the same as the domain event object method of the same name, so that
when reconstructing an aggregate, a list that starts with a snapshot and continues with the subsequent domain event
objects can be treated in the same way as a list of all the domain event objects of an aggregate. This similarity is
needed by the application repository, since some specialist event stores (e.g. AxonDB) return a snapshot as the first
domain event.

1.4.6 Versioning

Versioning allows aggregate and domain event classes to be modified after an application has been deployed.

On both aggregate and domain event classes, the class attribute class_version can be used to indicate the version
of the class. This attribute is inferred to have a default value of 1. If the data model is changed, by adding or removing
or renaming or changing the meaning of values of attributes, subsequent versions should be given a successively higher
number than the previously deployed version. Static methods of the form upcast_vX_vY() will be called to update

1.4. domain — Domain models 15

eventsourcing Documentation, Release 9.0.2

the state of a stored event or snapshot from a lower version X to the next higher version Y. Such upcast methods will
be called to upcast the state from the version of the class with which it was created to the version of the class which
will be reconstructed. For example, upcasting the stored state of an object created at version 2 of a class that will be
used to reconstruct an object at version 4 of the class will involve calling upcast methods upcast_v2_v3(), and
upcast_v3_v4(). If you aren’t using snapshots, you don’t need to define upcast methods or version numbers on
the aggregate class.

In the example below, version 1 of the class MyAggregate is defined with an attribute a.

class MyAggregate(Aggregate):
def __init__(self, a:str):

self.a = a

@classmethod
def create(cls, a:str):

return cls._create(cls.Created, id=uuid4(), a=a)

class Created(Aggregate.Created):
a: str

After an application that uses the above aggregate class has been deployed, its Created events will have been created
and stored with the a attribute defined. If subsequently the attribute b is added to the definition of the Created event,
in order for the existing stored events to be constructed in a way that satisfies the new version of the class, the stored
events will need to be upcast to have a value for b. In the example below, the static method upcast_v1_v2()
defined on the Created event sets a default value for b in the given state. The class attribute class_version
is set to 2. The same treatment is given to the aggregate class as the domain event class, so that snapshots can be
upcast.

class MyAggregate(Aggregate):
def __init__(self, a:str, b:int):

self.a = a
self.b = b

@classmethod
def create(cls, a:str, b: int = 0):

return cls._create(cls.Created, id=uuid4(), a=a, b=b)

class Created(Aggregate.Created):
a: str
b: int

class_version = 2

@staticmethod
def upcast_v1_v2(state):

state["b"] = 0

class_version = 2

@staticmethod
def upcast_v1_v2(state):

state["b"] = 0

After an application that uses the above version 2 aggregate class has been deployed, its Created events will have
be created and stored with both the a and b attributes. If subsequently the attribute c is added to the definition of the
Created event, in order for the existing stored events from version 1 to be constructed in a way that satisfies the new
version of the class, they will need to be upcast to include a value for b and c. The existing stored events from version
2 will need to be upcast to include a value for c. The additional static method upcast_v2_v3() defined on the

16 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

Created event sets a default value for c in the given state. The class attribute class_version is set to 3. The
same treatment is given to the aggregate class as the domain event class, so that any snapshots will be upcast.

class MyAggregate(Aggregate):
def __init__(self, a:str, b:int, c:float):

self.a = a
self.b = b
self.c = c

@classmethod
def create(cls, a:str, b: int = 0, c: float = 0.0):

return cls._create(cls.Created, id=uuid4(), a=a, b=b, c=c)

class Created(Aggregate.Created):
a: str
b: int
c: float

class_version = 3

@staticmethod
def upcast_v1_v2(state):

state["b"] = 0

@staticmethod
def upcast_v2_v3(state):

state["c"] = 0.0

class_version = 3

@staticmethod
def upcast_v1_v2(state):

state["b"] = 0

@staticmethod
def upcast_v2_v3(state):

state["c"] = 0.0

If subsequently a new event is added that manipulates a new attribute that is expected to be initialised when
the aggregate is created, in order that snapshots from earlier version will be upcast, the aggregate class attribute
class_version will need to be set to 4 and a static method upcast_v3_v4() defined on the aggregate class
which upcasts the state of a previously created snapshot. In the example below, the new attribute d is initialised in
the __init__() method, and a domain event which updates d is defined. Since the Created event class has not
changed, it remains at version 3.

class MyAggregate(Aggregate):
def __init__(self, a:str, b:int, c:float):

self.a = a
self.b = b
self.c = c
self.d = False

@classmethod
def create(cls, a:str, b: int = 0, c: float = 0.0):

return cls._create(cls.Created, id=uuid4(), a=a, b=b, c=c)

class Created(Aggregate.Created):
(continues on next page)

1.4. domain — Domain models 17

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

a: str
b: int
c: float

class_version = 3

@staticmethod
def upcast_v1_v2(state):

state["b"] = 0

@staticmethod
def upcast_v2_v3(state):

state["c"] = 0.0

def set_d(self, d: bool):
self.trigger_event(self.DUpdated, d=d)

class DUpdated(AggregateEvent):
d: bool

def apply(self, aggregate: "Aggregate") -> None:
aggregate.d = self.d

class_version = 4

@staticmethod
def upcast_v1_v2(state):

state["b"] = 0

@staticmethod
def upcast_v2_v3(state):

state["c"] = 0.0

@staticmethod
def upcast_v3_v4(state):

state["d"] = False

If the value objects used by your events also change, you may also need to define new transcodings with new names.
Simply register the new transcodings after the old, and use a modified name value for the transcoding. In this way, the
existing encoded values will be decoded by the old transcoding, and the new instances of the value object class will be
encoded with the new version of the transcoding.

In order to support forward compatibility as well as backward compatibility, so that consumers designed for old
versions will not be broken by modifications, it is advisable to restrict changes to existing types to be additions only,
so that existing attributes are unchanged. If existing aspects need to be changed, for example by renaming or removing
an attribute of an event, then it is advisable to define a new type. This approach depends on consumers overlooking or
ignoring new attribute and new types, but they may effectively be broken anyway by such changes if they no longer
see any data.

Including model changes in the domain events may help to inform consumers of changes to the model schema, and
may allow the domain model itself to be validated, so that classes are marked with new versions if the attributes have
changed. This may be addressed by a future version of this library. Considering model code changes as a sequence of
immutable events brings the state of the domain model code itself into the same form of event-oriented consideration
as the consideration of the state an application as a sequence of events.

18 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

1.4.7 Namespaced IDs

Aggregates can be created with version 5 UUIDs so that their IDs can be generated from a given name in a namespace.
They can be used for example to create IDs for aggregates with fixed names that you want to identify by name.
For example, you can use this technique to identify a system configuration object. This technique can also be used to
identify index aggregates that hold the IDs of aggregates with mutable names, or used to index other mutable attributes
of an event sourced aggregate. It isn’t possible to change the ID of an existing aggregate, because the domain events
will need to be stored together in a single sequence. And so, using an index aggregate that has an ID that can be
recreated from a particular value of a mutable attribute of another aggregate to hold the ID of that aggregate with
makes it possible to identify that aggregate from that particular value. Such index aggregates can be updated when the
mutable attribute changes, or not.

For example, if you have a collection of page aggregates with names that might change, and you want to be able to
identify the pages by name, then you can create index aggregates with version 5 UUIDs that are generated from the
names, and put the IDs of the page aggregates in the index aggregates. The aggregate classes Page and Index in the
example code below show how this can be done.

If we imagine we can save these page and index aggregates and retrieve them by ID, we can imagine retrieving a page
aggregate using its name by firstly recreating an index ID from the page name, retrieving the index aggregate using
that ID, getting the page ID from the index aggregate, and then using that ID to retrieve the page aggregate. When
the name is changed, a new index aggregate can be saved along with the page, so that later the page aggregate can be
retrieved using the new name. See the discussion about saving multiple aggregates to see an example of how this can
work.

from uuid import NAMESPACE_URL, uuid5, UUID
from typing import Optional

from eventsourcing.domain import Aggregate

class Page(Aggregate):
def __init__(self, name: str, body: str):

self.name = name
self.body = body

@classmethod
def create(cls, name: str, body: str = ""):

return cls._create(
id=uuid4(),
event_class=cls.Created,
name=name,
body=body

)

class Created(AggregateCreated):
name: str
body: str

def update_name(self, name: str):
self.trigger_event(self.NameUpdated, name=name)

class NameUpdated(AggregateEvent):
name: str

def apply(self, page: "Page"):
page.name = self.name

(continues on next page)

1.4. domain — Domain models 19

https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions_3_and_5_(namespace_name-based)

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

class Index(Aggregate):
def __init__(self, name: str, ref: UUID):

self.name = name
self.ref = ref

@classmethod
def create(cls, name: str, ref: UUID):

return cls._create(
event_class=cls.Created,
id=cls.create_id(page.name),
name=page.name,
ref=page.id

)

@staticmethod
def create_id(name: str):

return uuid5(NAMESPACE_URL, f"/pages/{name}")

class Created(AggregateCreated):
name: str
ref: UUID

def update_ref(self, ref):
self.trigger_event(self.RefUpdated, ref=ref)

class RefUpdated(AggregateEvent):
ref: Optional[UUID]

def apply(self, index: "Index"):
index.ref = self.ref

We can use the classes above to create a “page” aggregate with a name that we will then change. We can at the same
time create an index object for the page.

page = Page.create(name="Erth")
index1 = Index.create(page.name, page.id)

Let’s imagine these two aggregate are saved together, and having been saved can be retrieved by ID. See the discussion
about saving multiple aggregates to see how this works in an application object.

We can use the page name to recreate the index ID, and use the index ID to retrieve the index aggregate. We can then
obtain the page ID from the index aggregate, and then use the page ID to get the page aggregate.

index_id = Index.create_id("Erth")
assert index_id == index1.id
assert index1.ref == page.id

Now let’s imagine we want to correct the name of the page. We can update the name of the page, and create another
index aggregate for the new name, so that later we can retrieve the page using its new name.

page.update_name("Earth")
index2 = Index.create(page.name, page.id)

We can drop the reference from the old index, so that it can be used to refer to a different page.

We can now use the new name to get the ID of the second index aggregate, and imagine using the second index
aggregate to get the ID of the page.

20 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

index_id = Index.create_id("Earth")
assert index_id == index2.id
assert index2.ref == page.id

Saving and retrieving aggregates by ID is demonstrated in the discussion about saving multiple aggregates in the
applications documentation.

1.4.8 Declarative syntax

You may have noticed a certain amount of repetition in the definitions of the aggregates above. In several places, the
same argument was defined in a command method, on an event class, and in an apply method. The library offers a
more concise way to express aggregates by using a declarative syntax.

Create new aggregate by calling the aggregate class directly

A new event sourced aggregate can be created by calling the aggregate class directly. You don’t actually need to define
a class method to do this, although you may wish to express your project’s ubiquitous language by doing so.

Calling the aggregate class directly will firstly create a created event (an instance of the aggregate’s created event class)
and use that event object to construct an instance of the aggregate class.

class MyAggregate(Aggregate):
class Created(Aggregate.Created):

pass

Call the class directly.
agg = MyAggregate()

There is one pending event.
pending_events = agg.collect_events()
assert len(pending_events) == 1
assert isinstance(pending_events[0], MyAggregate.Created)

The pending event can be used to reconstruct the aggregate.
copy = pending_events[0].mutate(None)
assert copy.id == agg.id
assert copy.created_on == agg.created_on

Using the init method to define the created event class

If a created event class is not defined on an aggregate class, one will be automatically defined. The attributes of this
event class will be derived by inspecting the signature of the __init__() method. The example below has an init
method that has a name argument. Because this example doesn’t have a created event class defined explicitly on the
aggregate class, a created event class will be defined automatically to match the signature of the init method. That is,
a created event class will be defined that has an attribute name.

class MyAggregate(Aggregate):
def __init__(self, name):

self.name = name

Call the class with a 'name' argument.

(continues on next page)

1.4. domain — Domain models 21

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

agg = MyAggregate(name="foo")
assert agg.name == "foo"

There is one pending event.
pending_events = agg.collect_events()
assert len(pending_events) == 1

The pending event is a created event.
assert isinstance(pending_events[0], MyAggregate.Created)

The created event has a 'name' attribute.
pending_events[0].name == "foo"

The created event can be used to reconstruct the aggregate.
copy = pending_events[0].mutate(None)
assert copy.name == agg.name

Dataclass-style init methods

Python’s dataclass annotations can be used to define an aggregate’s __init__() method. A created event class can
be automatically defined from this method.

from dataclasses import dataclass

@dataclass
class MyAggregate(Aggregate):

name: str

Create a new aggregate.
agg = MyAggregate(name="foo")

The aggregate has a 'name' attribute
assert agg.name == "foo"

The created event has a 'name' attribute.
pending_events = agg.collect_events()
pending_events[0].name == "foo"

Optional arguments can be defined by providing default values on the dataclass attribute definitions.

from dataclasses import dataclass

@dataclass
class MyAggregate(Aggregate):

name: str = "bar"

Call the class without a name.
agg = MyAggregate()
assert agg.name == "bar"

Call the class with a name.
agg = MyAggregate("foo")
assert agg.name == "foo"

22 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

Anything that works on a dataclass should work here too. For example, you can define non-init argument attributes by
using the field feature of the dataclasses module.

from dataclasses import field
from typing import List

@dataclass
class MyAggregate(Aggregate):

history: List[str] = field(default_factory=list, init=False)

Create a new aggregate.
agg = MyAggregate()

The aggregate has a list.
assert agg.history == []

Please note, when using the dataclass-style for defining __init__() methods, using the @dataclass decorator
will inform your IDE of the method signature. The annotations will in any case be used to create an __init__()
method when the class does not already have an __init__(). Using the dataclass decorator merely enables code
completion and syntax checking, but the code will run just the same with or without the @dataclass decorator
being applied to aggregate classes that are defined using this style.

Declaring the created event class name

To give the created event class a particular name, use the class argument ‘created_event_name’.

class MyAggregate(Aggregate, created_event_name="Started"):
name: str

Create a new aggregate.
agg = MyAggregate("foo")

The created event class is called "Started".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Started)

This is equivalent to declaring the created event class explicitly on the aggregate class using a particular name.

class MyAggregate(Aggregate):
class Started(Aggregate.Created):

pass

Create a new aggregate.
agg = MyAggregate()

The created event class is called "Started".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Started)

If more than one created event class is defined on the aggregate class, perhaps because the name of the created event
class was changed and there are stored events that were created using the old created event class that still need to be
supported, the created_event_name class argument can be used to identify which created event class is the one
to use when creating new aggregate instances. This can be combined with upcasting old events, discussed above.

1.4. domain — Domain models 23

eventsourcing Documentation, Release 9.0.2

class MyAggregate(Aggregate, created_event_name="Started"):
class Created(Aggregate.Created):

pass

class Started(Aggregate.Created):
pass

Create a new aggregate.
agg = MyAggregate()

The created event class is called "Started".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Started)

If the created_event_name argument is used but the value does not match the name of one the created event
classes that are explicitly defined on the aggregate class, then an event class will be automatically defined, and it will
be used when creating new aggregate instances.

class MyAggregate(Aggregate, created_event_name="Opened"):
class Created(Aggregate.Created):

pass

class Started(Aggregate.Created):
pass

Create a new aggregate.
agg = MyAggregate()

The created event class is called "Opened".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Opened)

Defining the aggregate ID

By default, the aggregate ID will be a version 4 UUID, automatically generated when a new aggregate is created.
However, the aggregate ID can also be defined as a function of the arguments used to create the aggregate. You can do
this by defining a create_id() method.

class MyAggregate(Aggregate):
name: str

@staticmethod
def create_id(name: str):

return uuid5(NAMESPACE_URL, f"/my_aggregates/{name}")

Create a new aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

The aggregate ID is a version 5 UUID.
assert agg.id == MyAggregate.create_id("foo")

If a create_id() method is defined on the aggregate class, the base class method create_id() will be over-

24 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

ridden. The arguments used in this method must be a subset of the arguments used to create the aggregate. The base
class method simply returns a version 4 UUID, which is the default behaviour for generating aggregate IDs.

Alternatively, an ‘id’ attribute can be declared on the aggregate class, and an ID supplied directly when creating new
aggregates.

def create_id(name: str):
return uuid5(NAMESPACE_URL, f"/my_aggregates/{name}")

class MyAggregate(Aggregate):
id: UUID

Create an ID.
agg_id = create_id(name="foo")

Create an aggregate with the ID.
agg = MyAggregate(id=agg_id)
assert agg.id == agg_id

When defining an explicit __init__() method, the id argument can be set on the object as self._id. Assigning
to self.id won’t work because id is defined as a read-only property on the base aggregate class.

class MyAggregate(Aggregate):
def __init__(self, id: UUID):

self._id = id

Create an aggregate with the ID.
agg = MyAggregate(id=agg_id)
assert agg.id == agg_id

The @event decorator

A more concise way of expressing the concerns around defining, triggering and applying subsequent aggregate events
can be achieved by using the library function event() to decorate aggregate command methods.

When decorating a method with the @event decorator, the method signature will be used to automatically define
an aggregate event class. And when the method is called, the event will firstly be triggered with the values given
when calling the method, so that an event is created and used to mutate the state of the aggregate. The body of the
decorated method will be used as the apply() method of the event both after the event has been triggered and when
the aggregate is reconstructed from stored events. The name of the event class can be passed to the decorator.

from eventsourcing.domain import event

class MyAggregate(Aggregate):
name: str

@event("NameUpdated")
def update_name(self, name):

self.name = name

Create an aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

(continues on next page)

1.4. domain — Domain models 25

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

Update the name.
agg.update_name("bar")
assert agg.name == "bar"

There are two pending events.
pending_events = agg.collect_events()
assert len(pending_events) == 2
assert pending_events[0].name == "foo"

The second pending event is a 'NameUpdated' event.
assert isinstance(pending_events[1], MyAggregate.NameUpdated)

The second pending event has a 'name' attribute.
assert pending_events[1].name == "bar"

Inferring the event class name from the method name

The @event decorator can be used without providing the name of an event. If the decorator is used without any
arguments, the name of the event will be derived from the method name. The method name is assumed to be lower
case and underscore-separated. The name of the event class is constructed by firstly splitting the name of the method
by its underscore characters, then by capitalising the resulting parts, and then by concatenating the capitalised parts
to give an “upper camel case” class name. For example, a method name name_updated would give an event class
name NameUpdated.

from eventsourcing.domain import event

class MyAggregate(Aggregate):
name: str

@event
def name_updated(self, name):

self.name = name

Create an aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

Update the name.
agg.name_updated("bar")
assert agg.name == "bar"

There are two pending events.
pending_events = agg.collect_events()
assert len(pending_events) == 2
assert pending_events[0].name == "foo"

The second pending event is a 'NameUpdated' event.
assert isinstance(pending_events[1], MyAggregate.NameUpdated)

The second pending event has a 'name' attribute.
assert pending_events[1].name == "bar"

However, this creates a slight tension in the naming conventions because methods should normally be named using

26 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

the imperative form and event names should normally be past participles. However, this can be useful when naming
methods that will be only called by aggregate command methods under certain conditions.

For example, if an attempt is made to update the value of an attribute, but the given value happens to be identical to
the existing value, then it might be desirable to skip on having an event triggered.

class MyAggregate(Aggregate):
name: str

def update_name(self, name):
if name != self.name:

self.name_updated(name)

@event
def name_updated(self, name):

self.name = name

Create an aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

Update the name lots of times.
agg.update_name("foo")
agg.update_name("foo")
agg.update_name("foo")
agg.update_name("bar")
agg.update_name("bar")
agg.update_name("bar")
agg.update_name("bar")

There are two pending events (not eight).
pending_events = agg.collect_events()
assert len(pending_events) == 2, len(pending_events)

The World aggregate class revisited

Using the declarative syntax described above, the World aggregate in the basic example above can be expressed more
concisely in the following way.

In the example below, the World aggregate’s created event is automatically defined by inspecting the aggregate’s
__init__() method. The created event is named Created. The World.SomethingHappened event is auto-
matically defined by inspecting the decorated make_it_so()method. The event class name “SomethingHappened”
is given to the event decorator. The body of the decorated make_it_so() method will be used as the apply()
method of the World.SomethingHappened event, both when the event is triggered and when the aggregate is
reconstructed from stored events.

from eventsourcing.domain import event

class World(Aggregate):
def __init__(self):

self.history = []

@event("SomethingHappened")
def make_it_so(self, what):

self.history.append(what)

1.4. domain — Domain models 27

eventsourcing Documentation, Release 9.0.2

The World aggregate class can be called directly. Calling the class directly will call the Aggregate _create()
method with the automatically defined World.Created event. Calling the make_it_so() method will trigger a
World.SomethingHappened event, and this event will be used to mutate the state of the aggregate, such that the
make_it_so() method argument what will eventually be appended to the aggregate’s history attribute.

world = World()
world.make_it_so("dinosaurs")
world.make_it_so("trucks")
world.make_it_so("internet")

assert world.history[0] == "dinosaurs"
assert world.history[1] == "trucks"
assert world.history[2] == "internet"
assert len(world.collect_events()) == 4

The Page and Index aggregates revisited

The Page and Index aggregates defined in the above discussion about namespaced IDs can be expressed more
concisely in the following way.

from dataclasses import dataclass

@dataclass
class Page(Aggregate):

name: str
body: str = ""

@event("NameUpdated")
def update_name(self, name: str):

self.name = name

@dataclass
class Index(Aggregate):

name: str
ref: Optional[UUID]

@staticmethod
def create_id(name: str):

return uuid5(NAMESPACE_URL, f"/pages/{name}")

@event("RefUpdated")
def update_ref(self, ref: Optional[UUID]):

self.ref = ref

Create new page and index aggregates.
page = Page(name="Erth")
index1 = Index(name=page.name, ref=page.id)

The page name can be used to recreate
the index ID. The index ID can be used
to retrieve the index aggregate, which
gives the page ID, and then the page ID
can be used to retrive the page aggregate.

(continues on next page)

28 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

index_id = Index.create_id(name="Erth")
assert index_id == index1.id
assert index1.ref == page.id
assert index1.name == page.name

Later, the page name can be updated,
and a new index created for the page.
page.update_name(name="Earth")
index1.update_ref(ref=None)
index2 = Index(name=page.name, ref=page.id)

The new page name can be used to recreate
the new index ID. The new index ID can be
used to retrieve the new index aggregate,
which gives the page ID, and then the page
ID can be used to retrieve the renamed page.
index_id = Index.create_id(name="Earth")
assert index_id == index2.id
assert index2.ref == page.id
assert index2.name == page.name

Non-trivial command methods

Tn the examples above, the work of the command methods is “trivial”, in that the command method arguments are
always used directly as the aggregate event attribute values. But often a command method needs to do some work
before triggering an event. The event attributes may not be the same as the command method arguments. The logic of
the command may be such that under some conditions an event should not be triggered.

As a final example, consider the following Order class. It is an ordinary Python object class. Its __init__()
method takes a name argument. The method confirm() sets the attribute confirmed_at. The method
pickup() checks that the order has been confirmed before calling the _pickup() method which sets the attribute
pickedup_at. If the order has not been confirmed, an exception will be raised. That is, whilst the confirm()
command method is trivial in that its arguments are always used as the event attributes, the pickup() method is
non-trivial in that it will only trigger an event if the order has been confirmed. That means we can’t decorate the
pickup() method with the @event decorator without triggering an unwanted event.

class Order:
def __init__(self, name):

self.name = name
self.confirmed_at = None
self.pickedup_at = None

def confirm(self, at):
self.confirmed_at = at

def pickup(self, at):
if self.confirmed_at:

self._pickup(at)
else:

raise RuntimeError("Order is not confirmed")

def _pickup(self, at):
self.pickedup_at = at

This ordinary Python class can used in the usual way. We can construct a new instance of the class, and call its

1.4. domain — Domain models 29

eventsourcing Documentation, Release 9.0.2

command methods.

Start a new order, confirm, and pick up.
order = Order("my order")

try:
order.pickup(datetime.now())

except RuntimeError:
pass

else:
raise AssertionError("shouldn't get here")

order.confirm(datetime.now())
order.pickup(datetime.now())

This ordinary Python class can be easily converted into an event sourced aggregate by applying the library’s @event
decorator to the confirm() and _pickup() methods.

Because the command methods are decorated in this way, when the confirm() method is called, an Order.
Confirmed event will be triggered. When the _pickup() method is called, an Order.PickedUp event will
be triggered. Those event classes are defined automatically from the method signatures. The decorating of the
_pickup() method and not of the pickup() method is a good example of a command method that needs to
do some work before an event is triggered. The body of the pickup() method is only executed when the command
method is called, whereas the body of the _pickup() method is executed each time the event is applied to evolve
the state of the aggregate.

class Order(Aggregate):
def __init__(self, name):

self.name = name
self.confirmed_at = None
self.pickedup_at = None

@event("Confirmed")
def confirm(self, at):

self.confirmed_at = at

def pickup(self, at):
if self.confirmed_at:

self._pickup(at)
else:

raise RuntimeError("Order is not confirmed")

@event("PickedUp")
def _pickup(self, at):

self.pickedup_at = at

We can use the event sourced Order aggregate in the same way as the undecorated ordinary Python Order class. The
event sourced version has the advantage that using it will trigger a sequence of aggregate events that can be persisted
in a database and used in future to determine the state of the order.

order = Order("my order")
order.confirm(datetime.now())
order.pickup(datetime.now())

Check the state of the order.
assert order.name == "my order"
assert isinstance(order.confirmed_at, datetime)
assert isinstance(order.pickedup_at, datetime)

(continues on next page)

30 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

assert order.pickedup_at > order.confirmed_at

Check the triggered events determine the state of the order.
pending_events = order.collect_events()
copy = None
for e in pending_events:

copy = e.mutate(copy)
assert copy.name == order.name
assert copy.created_on == order.created_on
assert copy.modified_on == order.modified_on
assert copy.confirmed_at == order.confirmed_at
assert copy.pickedup_at == order.pickedup_at

Raising exceptions in the body of decorated methods

It is actually possible to decorate the pickup() command method with the @event decorator, but if a decorated
command method has conditional logic that would mean the state of the aggregate should not be evolved, you must take
care to raise an exception rather than returning early, and raise an exception before changing the state of the aggregate
at all. By raising an exception in the body of a decorated method, the triggered event will not in fact be appended to the
aggregate’s list of pending events, and it will be as if it never happened. However, the conditional expression will be
perhaps needlessly evaluated each time the aggregate is reconstructed from stored events. Of course this conditional
logic may be useful and considered as validation of the projection of earlier events, for example checking the the
Confirmed event is working properly.

If you wish to use this style, just make sure to raise an exception rather than returning early, and make sure not to change
the state of the aggregate if an exception may be raised later. Returning early will mean the event will be appended
to the list of pending events. Changing the state before raising an exception will the state will be different when the
aggregate is reconstructed from stored events. So if your method does change state and then raise an exception, make
sure to obtain a fresh version of the aggregate before continuing to trigger events.

class Order(Aggregate):
def __init__(self, name):

self.name = name
self.confirmed_at = None
self.pickedup_at = None

@event("Confirmed")
def confirm(self, at):

self.confirmed_at = at

@event("PickedUp")
def pickup(self, at):

if self.confirmed_at:
self.pickedup_at = at

else:
raise RuntimeError("Order is not confirmed")

Creating the aggregate causes one pending event.
order = Order("name")
assert len(order.pending_events) == 1

Call pickup() too early raises an exception.
try:

(continues on next page)

1.4. domain — Domain models 31

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

order.pickup(datetime.now())
except RuntimeError:

pass
else:

raise Exception("Shouldn't get here")

There is still only one pending event.
assert len(order.pending_events) == 1

Recording command arguments and reprocessing them each time the aggregate is reconstructed is perhaps best de-
scribed as “command sourcing”.

In many cases, a command will do some work and trigger an aggregate event that has attributes that are different from
the command, and in those cases it is necessary to have two different methods with different signatures: a command
method that is not decorated and a decorated method that triggers and applies an aggregate event. This second method
may arguably be well named by using a past participle rather than the imperative form.

The @aggregate decorator

Just for fun, the library’s aggregate() function can be used to declare event sourced aggregate classes. This
is equivalent to inheriting from the library’s Aggregate class. The created event name can be defined using the
created_event_name argument of the decorator. However, it is recommended to inherit from the Aggregate
class rather than using the @aggregate decorator so that full the Aggregate class definition will be visible to
your IDE.

from eventsourcing.domain import aggregate

@aggregate(created_event_name="Started")
class Order:

def __init__(self, name):
self.name = name

order = Order("my order")
pending_events = order.collect_events()
assert isinstance(pending_events[0], Order.Started)

1.4.9 Topics

A “topic” in this library is a string formed from joining with a colon character (':') the path to a Python
module (e.g. 'eventsourcing.domain') with the qualified name of an object in that module (e.g.
'Aggregate.Created'). For example 'eventsourcing.domain:Aggregate.Created' describes the
path to the library’s Created class. The library’s utils module contains the functions resolve_topic() and
get_topic() which are used in the library to resolve a given topic to a Python object, and to construct a topic for
a given Python object.

1.4.10 Classes

class eventsourcing.domain.MetaDomainEvent(*args, **kwargs)
Bases: abc.ABCMeta

32 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

static __new__(mcs, name: str, bases: tuple, cls_dict: dict) → eventsourc-
ing.domain.MetaDomainEvent

Create and return a new object. See help(type) for accurate signature.

__init__(*args, **kwargs)→ None
Initialize self. See help(type(self)) for accurate signature.

class eventsourcing.domain.DomainEvent(originator_id: uuid.UUID, originator_version: int,
timestamp: datetime.datetime)

Bases: abc.ABC

Base class for domain events, such as aggregate AggregateEvent and aggregate Snapshot.

Constructor arguments:

Parameters

• originator_id (UUID) – ID of originating aggregate.

• originator_version (int) – version of originating aggregate.

• timestamp (datetime) – date-time of the event

class eventsourcing.domain.AggregateEvent(originator_id: uuid.UUID, originator_version:
int, timestamp: datetime.datetime)

Bases: eventsourcing.domain.DomainEvent, typing.Generic

Base class for aggregate events. Subclasses will model decisions made by the domain model aggregates.

Constructor arguments:

Parameters

• originator_id (UUID) – ID of originating aggregate.

• originator_version (int) – version of originating aggregate.

• timestamp (datetime) – date-time of the event

mutate(obj: Optional[TAggregate])→ Optional[TAggregate]
Changes the state of the aggregate according to domain event attributes.

apply(aggregate: TAggregate)→ None
Applies the domain event to the aggregate.

class eventsourcing.domain.AggregateCreated(originator_id: uuid.UUID, origina-
tor_version: int, timestamp: date-
time.datetime, originator_topic: str)

Bases: eventsourcing.domain.AggregateEvent

Domain event for when aggregate is created.

Constructor arguments:

Parameters

• originator_id (UUID) – ID of originating aggregate.

• originator_version (int) – version of originating aggregate.

• timestamp (datetime) – date-time of the event

• originator_topic (str) – topic for the aggregate class

mutate(obj: Optional[TAggregate])→ TAggregate
Constructs aggregate instance defined by domain event object attributes.

1.4. domain — Domain models 33

eventsourcing Documentation, Release 9.0.2

eventsourcing.domain.event(arg: Union[function, str, Type[eventsourcing.domain.AggregateEvent],
None] = None) → Union[eventsourcing.domain.EventDecorator,
Type[eventsourcing.domain.EventDecorator]]

Can be used to decorate an aggregate method so that when the method is called an event is triggered. The body
of the method will be used to apply the event to the aggregate, both when the event is triggered and when the
aggregate is reconstructed from stored events.

class MyAggregate(Aggregate):
@event("NameChanged")
def set_name(self, name: str):

self.name = name

. . . is equivalent to. . .

class MyAggregate(Aggregate):
def set_name(self, name: str):

self.trigger_event(self.NameChanged, name=name)

class NameChanged(Aggregate.Event):
name: str

def apply(self, aggregate):
aggregate.name = self.name

In the example above, the event “NameChanged” is defined automatically by inspecting the signature of the
set_name() method. If it is preferred to declare the event class explicitly, for example to define upcasting of old
events, the event class itself can be mentioned in the event decorator rather than just providing the name of the
event as a string.

class MyAggregate(Aggregate):

class NameChanged(Aggregate.Event):
name: str

@event(NameChanged)
def set_name(self, name: str):

aggregate.name = self.name

eventsourcing.domain.triggers(arg: Union[function, str, Type[eventsourcing.domain.AggregateEvent],
None] = None) → Union[eventsourcing.domain.EventDecorator,
Type[eventsourcing.domain.EventDecorator]]

Can be used to decorate an aggregate method so that when the method is called an event is triggered. The body
of the method will be used to apply the event to the aggregate, both when the event is triggered and when the
aggregate is reconstructed from stored events.

class MyAggregate(Aggregate):
@event("NameChanged")
def set_name(self, name: str):

self.name = name

. . . is equivalent to. . .

class MyAggregate(Aggregate):
def set_name(self, name: str):

self.trigger_event(self.NameChanged, name=name)

class NameChanged(Aggregate.Event):
(continues on next page)

34 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

name: str

def apply(self, aggregate):
aggregate.name = self.name

In the example above, the event “NameChanged” is defined automatically by inspecting the signature of the
set_name() method. If it is preferred to declare the event class explicitly, for example to define upcasting of old
events, the event class itself can be mentioned in the event decorator rather than just providing the name of the
event as a string.

class MyAggregate(Aggregate):

class NameChanged(Aggregate.Event):
name: str

@event(NameChanged)
def set_name(self, name: str):

aggregate.name = self.name

class eventsourcing.domain.BoundEvent(event_decorator: eventsourc-
ing.domain.EventDecorator, aggregate: TAggregate)

Bases: object

Wraps an EventDecorator instance when attribute is accessed on an aggregate so that the aggregate methods can
be accessed.

__init__(event_decorator: eventsourcing.domain.EventDecorator, aggregate: TAggregate)

Parameters

• event_decorator (EventDecorator) –

• aggregate (Aggregate) –

__call__(*args, **kwargs)→ None
Call self as a function.

class eventsourcing.domain.DecoratedEvent(*args, **kwds)
Bases: eventsourcing.domain.AggregateEvent

apply(aggregate: TAggregate)→ None
Applies event to aggregate by calling method decorated by @event.

class eventsourcing.domain.MetaAggregate(*args, created_event_name: Optional[str] =
None)

Bases: abc.ABCMeta

static __new__(mcs, *args, **kwargs)→ eventsourcing.domain.MetaAggregate
Create and return a new object. See help(type) for accurate signature.

__init__(*args, created_event_name: Optional[str] = None)→ None
Initialize self. See help(type(self)) for accurate signature.

__call__(*args, **kwargs)→ TAggregate
Call self as a function.

static create_id(**kwargs)→ uuid.UUID
Returns a new aggregate ID.

_create(event_class: Type[TAggregateCreated], *, id: Optional[uuid.UUID] = None, **kwargs) →
TAggregate

Factory method to construct a new aggregate object instance.

1.4. domain — Domain models 35

eventsourcing Documentation, Release 9.0.2

class eventsourcing.domain.Aggregate
Bases: abc.ABC

Base class for aggregate roots.

Event
alias of AggregateEvent

static __new__(cls, *args, **kwargs)→ Any
Create and return a new object. See help(type) for accurate signature.

__base_init__(id: uuid.UUID, version: int, timestamp: datetime.datetime)→ None
Initialises an aggregate object with an id, a version number, and a timestamp. The internal
pending_events list is also initialised.

id
The ID of the aggregate.

created_on
The date and time when the aggregate was created.

pending_events
A list of pending events.

trigger_event(event_class: Type[TAggregateEvent], **kwargs)→ None
Triggers domain event of given type, by creating an event object and using it to mutate the aggregate.

collect_events()→ List[eventsourcing.domain.AggregateEvent]
Collects and returns a list of pending aggregate AggregateEvent objects.

class Created(*args, **kwds)
Bases: eventsourcing.domain.AggregateCreated

eventsourcing.domain.aggregate(cls: Optional[eventsourcing.domain.MetaAggregate] =
None, *, created_event_name: Optional[str] = None) →
Union[eventsourcing.domain.MetaAggregate, Callable]

Converts the class that was passed in to inherit from Aggregate.

@aggregate
class MyAggregate:

pass

. . . is equivalent to. . .

class MyAggregate(Aggregate):
pass

exception eventsourcing.domain.VersionError
Bases: Exception

Raised when a domain event can’t be applied to an aggregate due to version mismatch indicating the domain
event is not the next in the aggregate’s sequence of events.

class eventsourcing.domain.Snapshot(originator_id: uuid.UUID, originator_version: int,
timestamp: datetime.datetime, topic: str, state: dict)

Bases: eventsourcing.domain.DomainEvent

Snapshots represent the state of an aggregate at a particular version.

Constructor arguments:

Parameters

• originator_id (UUID) – ID of originating aggregate.

36 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

• originator_version (int) – version of originating aggregate.

• timestamp (datetime) – date-time of the event

• topic (str) – string that includes a class and its module

• state (dict) – version of originating aggregate.

classmethod take(aggregate: TAggregate)→ eventsourcing.domain.Snapshot
Creates a snapshot of the given Aggregate object.

mutate(_: None = None)→ TAggregate
Reconstructs the snapshotted Aggregate object.

eventsourcing.utils.get_topic(cls: type)→ str
Returns a string that locates the given class.

eventsourcing.utils.resolve_topic(topic: str)→ Any
Returns an object located by the given string.

1.5 application — Applications

This module helps with developing event-sourced applications.

An event-sourced application object has command and query methods used by clients to interact with its domain
model. An application object has an event-sourced repository used to obtain already existing event-sourced aggre-
gates. It also has a notification log that is used to propagate the state of the application as a sequence of domain event
notifications.

1.5.1 Domain-driven design

The book Domain-Driven Design describes a “layered architecture” with four layers: interface, application, domain,
and infrastructure. The application layer depends on the domain and infrastructure layers. The interface layer depends
on the application layer.

Generally speaking, the application layer implements commands which change the state of the application, and queries
which present the state of the application. The commands and queries (“application services”) are called from the
interface layer. By keeping the application and domain logic in the application and domain layers, different interfaces
can be developed for different technologies without duplicating application and domain logic.

The discussion below continues these ideas, by combining event-sourced aggregates and persistence objects in an
application object that implements “application services” as object methods.

1.5.2 Application objects

An event-sourced application object combines a domain model with a cohesive mechanism for storing and retrieving
domain events.

The library’s Application object class brings together objects from the domain and persistence modules. It can be
subclassed to develop event-sourced applications. The general idea is to name your application object class after the
domain supported by its domain model, and then define command and query methods that allow interfaces to create,
read, update and delete your domain model aggregates. Domain model aggregates are discussed in the domain module
documentation. The “ubiquitous language” of your project should guide the names of the application’s command and
query methods, along with those of its domain model aggregates.

The Application class defines an object method save() which can be used to update the recorded state of one
or many domain model aggregates. The save() method functions by using the aggregate’s collect_events()

1.5. application — Applications 37

eventsourcing Documentation, Release 9.0.2

method to collect pending domain events; the pending domain events are stored by calling the put() method of
application’s event store.

The Application class defines an object attribute repository which holds an event-sourced repository. The
repository’s get() method can be used by your application’s command and query methods to obtain already existing
aggregates.

The Application class defines an object attribute log which holds a local notification log. The notification log
can be used to propagate the state of an application as a sequence of domain event notifications.

The Application class defines an object method take_snapshot() which can be used for snapshotting exist-
ing aggregates. Snapshotting isn’t necessary, but can help to reduce the time it takes to access aggregates with lots of
domain events.

1.5.3 Basic example

In the example below, the Worlds application extends the library’s application object base class. The World aggre-
gate is defined and discussed as the basic example in the domain module documentation.

The Worlds application’s create_world() method is a command method that creates and saves new World
aggregates, returning a new world_id that can be used to identify the aggregate on subsequence method calls. It
saves the new aggregate by calling the base class save() method.

The Worlds application’s make_it_so() method is a command method that obtains an existing World aggregate
from the repository, then calls the aggregate’s command method make_it_so(), and then saves the aggregate by
calling the application’s save() method.

The Worlds application’s get_world_history() method is a query method that presents the current history of
an existing aggregate.

from typing import List
from uuid import UUID

from eventsourcing.application import Application

class Worlds(Application):
def create_world(self) -> UUID:

world = World.create()
self.save(world)
return world.id

def make_it_so(self, world_id: UUID, what: str):
world = self.repository.get(world_id)
world.make_it_so(what)
self.save(world)

def get_world_history(self, world_id: UUID) -> List[str]:
world = self.repository.get(world_id)
return list(world.history)

In the example below, an instance of the Worlds application is constructed. A new World aggregate is created by
calling the create_world() method. Three items are added to its history: “dinosaurs”, “trucks”, and “internet” by
calling the make_it_so() application command with the world_id aggregate ID. The history of the aggregate is
obtained when the get_world_history() method is called.

38 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

application = Worlds()

world_id = application.create_world()

application.make_it_so(world_id, "dinosaurs")
application.make_it_so(world_id, "trucks")
application.make_it_so(world_id, "internet")

history = application.get_world_history(world_id)
assert history[0] == "dinosaurs"
assert history[1] == "trucks"
assert history[2] == "internet"

By default, the application object uses the “Plain Old Python Object” infrastructure which has stored domain events
in memory only. To store the domain events in a real database, you will need to configure persistence.

1.5.4 Repository

A repository is used to get the already existing aggregates of the application’s domain model.

The application object’s repository attribute has an instance of the library’s Repository class.

The repository’s get() method is used to obtain already existing aggregates. It uses the event store’s get() method
to retrieve the already existing domain event objects of the requested aggregate, and the mutate() methods of the
domain event objects to reconstruct the state of the requested aggregate. The repository’s get() method accepts two
arguments: aggregate_id and version:

The aggregate_id argument is required, and should be the ID of an already existing aggregate. If the aggregate is
not found, the exception AggregateNotFound will be raised.

The version argument is optional, and represents the required version of the aggregate. If the requested version
is greater than the highest available version of the aggregate, the highest available version of the aggregate will be
returned.

world_latest = application.repository.get(world_id)

assert world_latest.version == 4
assert len(world_latest.history) == 3

world_v1 = application.repository.get(world_id, version=1)

assert world_v1.version == 1
assert len(world_v1.history) == 0

world_v2 = application.repository.get(world_id, version=2)

assert world_v2.version == 2
assert len(world_v2.history) == 1
assert world_v2.history[-1] == "dinosaurs"

world_v3 = application.repository.get(world_id, version=3)

assert world_v3.version == 3
assert len(world_v3.history) == 2
assert world_v3.history[-1] == "trucks"

(continues on next page)

1.5. application — Applications 39

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

world_v4 = application.repository.get(world_id, version=4)

assert world_v4.version == 4
assert len(world_v4.history) == 3
assert world_v4.history[-1] == "internet"

world_v5 = application.repository.get(world_id, version=5)

assert world_v5.version == 4 # There is no version 5.
assert len(world_v5.history) == 3
assert world_v5.history[-1] == "internet"

1.5.5 Notification log

A notification log can be used to propagate the state of an application as a sequence of domain event notifications.

The application object’s log attribute has an instance of the library’s LocalNotificationLog class. The no-
tification log presents linked sections of notification objects. The sections are instances of the library’s Section
class.

Each event notification has an id that has the unique integer ID of the event notification. The event notifications are
ordered by their IDs, with later event notifications having higher values than earlier ones.

A notification log section is identified by a section ID string that comprises two integers separated by a comma, for
example "1,10". The first integer specifies the notification ID of the first event notification included in the section.
The second integer specifies the notification ID of the second event notification included in the section. Sections
are requested from the notification using the Python square bracket syntax, for example application.log["1,
10"].

The notification log will return a section that has no more than the requested number of event notifications. Sometimes
there will be less event notifications in the recorded sequence of event notifications than are needed to fill the section,
in which case less than the number of event notifications will be included in the returned section. On the other hand,
there may be gaps in the recorded sequence of event notifications, in which case the last event notification included in
the section may have a notification ID that is greater than that which was specified in the requested section ID.

A notification log section has an attribute section_id that has the section ID. The section ID value will represent
the event notification ID of the first and the last event notification included in the section. If there are no event
notifications, the section ID will be None.

A notification log section has an attribute items that has the list of notification objects included in the section.

A notification log section has an attribute next_id that has the section ID of the next section in the notification log.
If the notification log section has less event notifications that were requested, the next_id value will be None.

In the example above, there are four domain events in the domain model, and so there are four notifications in the
notification log.

from eventsourcing.persistence import Notification

section = application.log["1,10"]

assert len(section.items) == 4
assert section.id == "1,4"
assert section.next_id is None

assert isinstance(section.items[0], Notification)

(continues on next page)

40 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

assert section.items[0].id == 1
assert section.items[1].id == 2
assert section.items[2].id == 3
assert section.items[3].id == 4

assert section.items[0].originator_id == world_id
assert section.items[1].originator_id == world_id
assert section.items[2].originator_id == world_id
assert section.items[3].originator_id == world_id

assert section.items[0].originator_version == 1
assert section.items[1].originator_version == 2
assert section.items[2].originator_version == 3
assert section.items[3].originator_version == 4

assert "World.Created" in section.items[0].topic
assert "World.SomethingHappened" in section.items[1].topic
assert "World.SomethingHappened" in section.items[2].topic
assert "World.SomethingHappened" in section.items[3].topic

assert b"dinosaurs" in section.items[1].state
assert b"trucks" in section.items[2].state
assert b"internet" in section.items[3].state

A domain event can be reconstructed from an event notification by calling the application’s mapper method
to_domain_event(). If the application is configured to encrypt stored events, the event notification will also
be encrypted, but the mapper will decrypt the event notification.

domain_event = application.mapper.to_domain_event(section.items[0])
assert isinstance(domain_event, World.Created)
assert domain_event.originator_id == world_id

domain_event = application.mapper.to_domain_event(section.items[3])
assert isinstance(domain_event, World.SomethingHappened)
assert domain_event.originator_id == world_id
assert domain_event.what == "internet"

1.5.6 Snapshotting

If the reconstruction of an aggregate depends on obtaining and replaying a relatively large number of domain event
objects, it can take a relatively long time to reconstruct the aggregate. Snapshotting aggregates can help to reduce
access time of aggregates with lots of domain events.

The application method take_snapshot() can be used to create a snapshot of the state of an aggregate. The ID of
an aggregate to be snapshotted must be passed when calling this method. By passing in the ID (and optional version
number), rather than an actual aggregate object, the risk of snapshotting a somehow “corrupted” aggregate object that
does not represent the actually recorded state of the aggregate is avoided.

To enable the snapshotting functionality, the environment variable IS_SNAPSHOTTING_ENABLED must be set to a
valid “true” value. The function strtobool() from the Python distutils.utils module is used to interpret
the value of this environment variable, so that strings "y", "yes", "t", "true", "on" and "1" are considered to
be “true” values, and "n", "no", "f", "false", "off" and "0" are considered to be “false” values, and other
values are considered to be invalid. The default is for an application’s snapshotting functionality to be not enabled.

1.5. application — Applications 41

eventsourcing Documentation, Release 9.0.2

import os

os.environ["IS_SNAPSHOTTING_ENABLED"] = "y"
application = Worlds()

world_id = application.create_world()

application.make_it_so(world_id, "dinosaurs")
application.make_it_so(world_id, "trucks")
application.make_it_so(world_id, "internet")

application.take_snapshot(world_id)

The snapshots are stored separately from the domain events. The application object has a snapshots attribute,
which holds an event store dedicated to storing snapshots. The snapshots can be retrieved from the snapshot store.

snapshots = application.snapshots.get(world_id, desc=True, limit=1)

snapshots = list(snapshots)
assert len(snapshots) == 1
snapshot = snapshots[0]

assert snapshot.originator_id == world_id
assert snapshot.originator_version == 4

1.5.7 Configuring persistence

The example above uses the application’s default persistence infrastructure. By default, the application object uses the
library’s “plain old Python objects” infrastructure factory, which provides the application with infrastructure classes
that simply keep stored events in a data structure in memory.

To use alternative persistence infrastructure, you will need to set the environment variable
INFRASTRUCTURE_FACTORY to the topic of another infrastructure factory object class that will construct
alternative application persistence objects. Using alternative persistence infrastructure will normally involve setting
particular environment variables that configure access to a real database, such as a database name, a user name, and a
password.

The example below shows how to configure the application to use the library’s SQLite infrastructure. In the case of
the library’s SQLite factory, the environment variable SQLITE_DBNAME must be set to a file path. And if the tables
already exist, the CREATE_TABLE may be set to a “false” value ("n", "no", "f", "false", "off", or "0").
The function strtobool() from the Python distutils.utils module is used to interpret the value of this
environment variable.

from tempfile import NamedTemporaryFile

tmpfile = NamedTemporaryFile(suffix="_eventsourcing_test.db")
tmpfile.name

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.sqlite:Factory"
os.environ["SQLITE_DBNAME"] = tmpfile.name
application = Worlds()

world_id = application.create_world()

application.make_it_so(world_id, "dinosaurs")

(continues on next page)

42 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

application.make_it_so(world_id, "trucks")
application.make_it_so(world_id, "internet")

application.take_snapshot(world_id, version=2)

By using a file on disk, the named temporary file tmpfile above, the state of the application will endure after
the application has been reconstructed. The database table only needs to be created once, and so when creating an
application for an already existing database the environment variable CREATE_TABLE may be set to a “false” value
("n", "no", "f", "false", "off", "0").

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.sqlite:Factory"
application = Worlds()

history = application.get_world_history(world_id)
assert history[0] == "dinosaurs"
assert history[1] == "trucks"
assert history[2] == "internet"

1.5.8 Registering custom transcodings

The application’s persistence mechanism serialises the domain events, using the library’s transcoder. If your aggre-
gates’ domain event objects have objects of types that are not already supported by the transcoder, for example custom
value objects, custom transcodings for these objects will need to be implemented and registered with the application’s
transcoder.

The application method register_transcodings() can be extended to register custom transcodings for custom
value objects used in your application’s domain events. The library’s application base class registers transcodings for
UUID, Decimal, and datetime objects.

For example, to define and register a Transcoding for the Python date class, define a class such as the
DateAsISO class below, and extend the application register_transcodings() method by calling the
super() method with the given transcoder argument, and then the transcoder’s register() method once
for each of your custom transcodings.

from datetime import date
from typing import Union

from eventsourcing.persistence import Transcoder, Transcoding

class MyApplication(Application):
def register_transcodings(self, transcoder: Transcoder):

super().register_transcodings(transcoder)
transcoder.register(DateAsISO)

class DateAsISO(Transcoding):
type = date
name = "date_iso"

def encode(self, o: date) -> str:
return o.isoformat()

def decode(self, d: Union[str, dict]) -> date:

(continues on next page)

1.5. application — Applications 43

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

assert isinstance(d, str)
return date.fromisoformat(d)

1.5.9 Encryption and compression

Application-level encryption is useful for encrypting the state of the application “on the wire” and “at rest”. Compres-
sion is useful for reducing transport time of domain events and domain event notifications across a network and for
reducing the total size of recorded application state.

The library’s AESCipher class can be used to encrypt stored domain events. The Python zlib module can be used
to compress stored domain events. It is encapsulated by the library’s ZlibCompressor class.

To enable encryption and compression, set the environment variables CIPHER_TOPIC (a topic to a cipher class),
CIPHER_KEY (a valid encryption key), and COMPRESSOR_TOPIC (topic for a compressor class).

When using the library’s AESCipher class, you can use its static method create_key() to generate a valid
encryption key.

import os

from eventsourcing.cipher import AESCipher

Generate a cipher key (keep this safe).
cipher_key = AESCipher.create_key(num_bytes=32)

Configure cipher key.
os.environ["CIPHER_KEY"] = cipher_key

Configure cipher topic.
os.environ["CIPHER_TOPIC"] = "eventsourcing.cipher:AESCipher"

Configure compressor topic.
os.environ["COMPRESSOR_TOPIC"] = "eventsourcing.compressor:ZlibCompressor"

1.5.10 Saving multiple aggregates

In many cases, it is both possible and very useful to save more than one aggregate in the same atomic transaction. The
example below continues the example from the discussion of namespaced IDs in the previous section. The aggregate
classes Page and Index are defined in that section.

We can define a simple wiki application, which creates named pages. Pages can be retrieved by name. Names can be
changed and the pages can be retrieved by the new name.

class Wiki(Application):
def create_page(self, name: str, body: str) -> None:

page = Page.create(name, body)
index = Index.create(page)
self.save(page, index)

def rename_page(self, name: str, new_name: str) -> None:
page = self.get_page(name)
page.update_name(new_name)
index = Index.create(page)
self.save(page, index)

(continues on next page)

44 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

return page.body

def get_page(self, name: str) -> Page:
index_id = Index.create_id(name)
index = self.repository.get(index_id)
page_id = index.ref
return self.repository.get(page_id)

Now let’s construct the application object and create a new page (with a deliberate spelling mistake).

wiki = Wiki()

wiki.create_page(name="Erth", body="Lorem ipsum...")

We can use the page name to retrieve the body of the page.

assert wiki.get_page(name="Erth").body == "Lorem ipsum..."

We can also update the name of the page, and then retrieve the page using the new name.

wiki.rename_page(name="Erth", new_name="Earth")

assert wiki.get_page(name="Earth").body == "Lorem ipsum..."

The uniqueness constraint on the recording of stored domain event objects combined with the atomicity of recording
domain events means that name collisions in the index will result in the wiki not being updated.

from eventsourcing.persistence import RecordConflictError

Can't create another page using an existing name.
try:

wiki.create_page(name="Earth", body="Neque porro quisquam...")
except RecordConflictError:

pass
else:

raise AssertionError("RecordConflictError not raised")

assert wiki.get_page(name="Earth").body == "Lorem ipsum..."

Can't rename another page to an existing name.
wiki.create_page(name="Mars", body="Neque porro quisquam...")
try:

wiki.rename_page(name="Mars", new_name="Earth")
except RecordConflictError:

pass
else:

raise AssertionError("RecordConflictError not raised")

assert wiki.get_page(name="Earth").body == "Lorem ipsum..."
assert wiki.get_page(name="Mars").body == "Neque porro quisquam..."

A more refined implementation might release old index objects when page names are changed so that they can be
reused by other pages, or update the old index to point to the new index, so that redirects can be implemented.

1.5. application — Applications 45

eventsourcing Documentation, Release 9.0.2

1.5.11 Classes

class eventsourcing.application.Repository(event_store: eventsourc-
ing.persistence.EventStore[eventsourcing.domain.AggregateEvent][eventsourcing.domain.AggregateEvent],
snapshot_store: Op-
tional[eventsourcing.persistence.EventStore[eventsourcing.domain.Snapshot][eventsourcing.domain.Snapshot]]
= None)

Bases: typing.Generic

Reconstructs aggregates from events in an EventStore, possibly using snapshot store to avoid replaying all
events.

__init__(event_store: eventsourcing.persistence.EventStore[eventsourcing.domain.AggregateEvent][eventsourcing.domain.AggregateEvent],
snapshot_store: Optional[eventsourcing.persistence.EventStore[eventsourcing.domain.Snapshot][eventsourcing.domain.Snapshot]]
= None)

Initialises repository with given event store (an EventStore for aggregate AggregateEvent objects)
and optionally a snapshot store (an EventStore for aggregate Snapshot objects).

get(aggregate_id: uuid.UUID, version: Optional[int] = None)→ TAggregate
Returns an Aggregate for given ID, optionally at the given version.

class eventsourcing.application.Section(id: Optional[str], items:
List[eventsourcing.persistence.Notification],
next_id: Optional[str])

Bases: object

Frozen dataclass that represents a section from a NotificationLog. The items attribute contains a list of
Notification objects. The id attribute is the section ID, two integers separated by a comma that described
the first and last notification ID that are included in the section. The next_id attribute describes the section
ID of the next section, and will be set if the section contains as many notifications are were requested.

Constructor arguments:

Parameters

• id (Optional[str]) – section ID of this section e.g. “1,10”

• items (List[Notification]) – a list of event notifications

• next_id (Optional[str]) – section ID of the following section

class eventsourcing.application.NotificationLog
Bases: abc.ABC

Abstract base class for notification logs.

__getitem__(section_id: str)→ eventsourcing.application.Section
Returns a Section from a notification log.

class eventsourcing.application.LocalNotificationLog(recorder: eventsourc-
ing.persistence.ApplicationRecorder,
section_size: int = 10)

Bases: eventsourcing.application.NotificationLog

Notification log that presents sections of event notifications retrieved from an ApplicationRecorder.

__init__(recorder: eventsourcing.persistence.ApplicationRecorder, section_size: int = 10)
Initialises a local notification object with given ApplicationRecorder and an optional section size.

Constructor arguments:

Parameters

46 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

• recorder (ApplicationRecorder) – application recorder from which event noti-
fications will be selected

• section_size (int) – number of notifications to include in a section

__getitem__(requested_section_id: str)→ eventsourcing.application.Section
Returns a Section of event notifications based on the requested section ID. The section ID of the returned
section will describe the event notifications that are actually contained in the returned section, and may vary
from the requested section ID if there are less notifications in the recorder than were requested, or if there
are gaps in the sequence of recorded event notification.

class eventsourcing.application.Application
Bases: abc.ABC, typing.Generic

Base class for event-sourced applications.

__init__()→ None
Initialises an application with an InfrastructureFactory , a Mapper, an
ApplicationRecorder, an EventStore, a Repository , and a LocalNotificationLog.

construct_factory()→ eventsourcing.persistence.InfrastructureFactory
Constructs an InfrastructureFactory for use by the application.

construct_mapper(application_name: str = ”)→ eventsourcing.persistence.Mapper
Constructs a Mapper for use by the application.

construct_transcoder()→ eventsourcing.persistence.Transcoder
Constructs a Transcoder for use by the application.

register_transcodings(transcoder: eventsourcing.persistence.Transcoder)→ None
Registers Transcoding objects on given JSONTranscoder.

construct_recorder()→ eventsourcing.persistence.ApplicationRecorder
Constructs an ApplicationRecorder for use by the application.

construct_event_store()→ eventsourcing.persistence.EventStore[eventsourcing.domain.AggregateEvent][eventsourcing.domain.AggregateEvent]
Constructs an EventStore for use by the application to store and retrieve aggregate
AggregateEvent objects.

construct_snapshot_store()→ Optional[eventsourcing.persistence.EventStore[eventsourcing.domain.Snapshot][eventsourcing.domain.Snapshot]]
Constructs an EventStore for use by the application to store and retrieve aggregate Snapshot objects.

construct_repository()→ eventsourcing.application.Repository[~TAggregate][TAggregate]
Constructs a Repository for use by the application.

construct_notification_log()→ eventsourcing.application.LocalNotificationLog
Constructs a LocalNotificationLog for use by the application.

save(*aggregates)→ None
Collects pending events from given aggregates and puts them in the application’s event store.

notify(new_events: List[eventsourcing.domain.AggregateEvent])→ None
Called after new domain events have been saved. This method on this class class doesn’t actually do
anything, but this method may be implemented by subclasses that need to take action when new domain
events have been saved.

take_snapshot(aggregate_id: uuid.UUID, version: Optional[int] = None)→ None
Takes a snapshot of the recorded state of the aggregate, and puts the snapshot in the snapshot store.

exception eventsourcing.application.AggregateNotFound
Bases: Exception

Raised when an Aggregate object is not found in a Repository .

1.5. application — Applications 47

eventsourcing Documentation, Release 9.0.2

class eventsourcing.cipher.AESCipher(cipher_key: str)
Bases: eventsourcing.persistence.Cipher

Cipher strategy that uses AES cipher in GCM mode.

static create_key(num_bytes: int)→ str
Creates AES cipher key, with length num_bytes.

Parameters num_bytes – An int value, either 16, 24, or 32.

__init__(cipher_key: str)
Initialises AES cipher with cipher_key.

Parameters cipher_key (str) – 16, 24, or 32 bytes encoded as base64

encrypt(plaintext: bytes)→ bytes
Return ciphertext for given plaintext.

decrypt(ciphertext: bytes)→ bytes
Return plaintext for given ciphertext.

class eventsourcing.compressor.ZlibCompressor
Bases: eventsourcing.persistence.Compressor

compress(data: bytes)→ bytes
Compress bytes using zlib.

decompress(data: bytes)→ bytes
Decompress bytes using zlib.

1.6 persistence — Infrastructure

This module provides a cohesive mechanism for storing domain events.

The entire mechanism is encapsulated by the library’s event store object class. An event store stores and retrieves
domain events. The event store uses a mapper to convert domain events to stored events, and it uses a recorder to
insert stored events in a datastore.

A mapper converts domain event objects of various types to stored event objects when domain events are stored in
the event store. It also converts stored events objects back to domain event objects when domain events are retrieved
from the event store. A mapper uses an extensible transcoder that can be set up with additional transcoding objects
that serialise and deserialise particular types of object, such as Python’s UUID, datetime and Decimal objects. A
mapper may use a compressor to compress and decompress the state of stored event objects, and may use a cipher to
encode and decode the state of stored event objects. If both a compressor and a cipher are being used by a mapper,
the state of any stored event objects will be compressed and then encoded when storing domain events, and will be
decoded and then decompressed when retrieving domain events.

A recorder inserts stored event objects in a datastore when domain events are stored in an event store, and selects
stored events from a datastore when domain events are retrieved from an event store. Depending on the type of the
recorder it may be possible to select the stored events as event notifications, and it may be possible atomically to record
tracking records along with the stored events,

1.6.1 Transcoder

A transcoder is used by a mapper to serialise and deserialise the state of domain model event objects.

The library’s JSONTranscoder class can be constructed without any arguments.

48 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

from eventsourcing.persistence import JSONTranscoder

transcoder = JSONTranscoder()

The transcoder object has methods encode() and decode() which are used to perform the serialisation and
deserialisation. The serialised state is a Python bytes object.

data = transcoder.encode({"a": 1})
copy = transcoder.decode(data)
assert copy == {"a": 1}

The library’s JSONTranscoder uses the Python json module. And so, by default, only the basic object types
supported by that module can be encoded and decoded. The transcoder can be extended by registering transcodings
for the other types of object used in your domain model’s event objects. A transcoding will convert other types of
object to a representation of the non-basic type of object that uses the basic types that are supported. The transcoder
method register() is used to register individual transcodings with the transcoder.

1.6.2 Transcodings

In order to encode and decode non-basic types of object that are not supported by the transcoder by default, custom
transcodings need to be defined in code and registered with the transcoder using the transcoder object’s register()
method. A transcoding will encode an instance of a non-basic type of object that cannot by default be encoded by
the transcoder into a basic type of object that can be encoded by the transcoder, and will decode that representation
into the original type of object. This makes it possible to transcode custom value objects, including custom types that
contain custom types. The transcoder works recursively through the object and so included custom types do not need
to be encoded by the transcoder, but will be converted subsequently.

The library includes a limited collection of custom transcoding objects. For example, the library’s UUIDAsHex class
transcodes a Python UUID objects as a hexadecimal string.

from uuid import uuid4

from eventsourcing.persistence import UUIDAsHex

transcoding = UUIDAsHex()

id1 = uuid4()
data = transcoding.encode(id1)
copy = transcoding.decode(data)
assert copy == id1

The library’s DatetimeAsISO class transcodes Python datetime objects as ISO strings.

from datetime import datetime

from eventsourcing.persistence import (
DatetimeAsISO,

)

transcoding = DatetimeAsISO()

datetime1 = datetime(2021, 12, 31, 23, 59, 59)
data = transcoding.encode(datetime1)
copy = transcoding.decode(data)
assert copy == datetime1

1.6. persistence — Infrastructure 49

eventsourcing Documentation, Release 9.0.2

The library’s DecimalAsStr class transcodes Python Decimal objects as decimal strings.

from decimal import Decimal

from eventsourcing.persistence import (
DecimalAsStr,

)

transcoding = DecimalAsStr()

decimal1 = Decimal("1.2345")
data = transcoding.encode(decimal1)
copy = transcoding.decode(data)
assert copy == decimal1

Transcodings are registered with the transcoder using the transcoder object’s register() method.

transcoder.register(UUIDAsHex())
transcoder.register(DatetimeAsISO())
transcoder.register(DecimalAsStr())

data = transcoder.encode(id1)
copy = transcoder.decode(data)
assert copy == id1

data = transcoder.encode(datetime1)
copy = transcoder.decode(data)
assert copy == datetime1

data = transcoder.encode(decimal1)
copy = transcoder.decode(data)
assert copy == decimal1

Attempting to transcode an unsupported type will result in a Python TypeError.

from datetime import date

date1 = date(2021, 12, 31)
try:

data = transcoder.encode(date1)
except TypeError as e:

assert e.args[0] == (
"Object of type <class 'datetime.date'> is not serializable. "
"Please register a custom transcoding for this type."

)
else:

raise AssertionError("TypeError not raised")

The library’s abstract base class Transcoding can be subclassed to define custom transcodings for other object
types. To define a custom transcoding, simply subclass this base class, assign to the class attribute type the class
transcoded type, and assign a string to the type. Then define a encode() that converts an instance of that type
to a representation that uses a basic type, and a decode() method that will convert that representation back to an
instance of that type.

from eventsourcing.persistence import Transcoding
from typing import Union

(continues on next page)

50 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

class DateAsISO(Transcoding):
type = date
name = "date_iso"

def encode(self, obj: date) -> str:
return obj.isoformat()

def decode(self, data: str) -> date:
return date.fromisoformat(data)

transcoder.register(DateAsISO())

data = transcoder.encode(date1)
copy = transcoder.decode(data)
assert copy == date1

Please note, due to the way the Python json module works, it isn’t currently possible to transcode subclasses of the
basic Python types that are supported by default, such as dict, list, tuple, str, int, float, and bool. This
behaviour also means an encoded tuple will be decoded as a list. This behaviour is coded in Python as C code,
and can’t be suspended without avoiding the use of this C code and thereby incurring a performance penalty in the
transcoding of domain event objects.

data = transcoder.encode((1, 2, 3))
copy = transcoder.decode(data)
assert isinstance(copy, list)
assert copy == [1, 2, 3]

Custom or non-basic types that contain other custom or non-basic types can be supported in the transcoder by reg-
istering a transcoding for each non-basic type. The transcoding for the type which contains non-basic types must
return an object that represents that type by involving the included non-basic objects, and this representation will be
subsequently transcoded by the transcoder using the applicable transcoding for the included non-basic types. In the
example below, SimpleCustomValue has a UUID and a date as its id and data attributes. The transcoding
for SimpleCustomValue returns a Python dict that includes the non-basic UUID and date objects. The class
ComplexCustomValue simply has a ComplexCustomValue object as its value attribute, and its transcoding
simply returns that object.

from uuid import UUID

class SimpleCustomValue:
def __init__(self, id: UUID, date: date):

self.id = id
self.date = date

def __eq__(self, other):
return (

isinstance(other, SimpleCustomValue) and
self.id == other.id and self.date == other.date

)

class ComplexCustomValue:
def __init__(self, value: SimpleCustomValue):

self.value = value

def __eq__(self, other):
(continues on next page)

1.6. persistence — Infrastructure 51

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

return (
isinstance(other, ComplexCustomValue) and
self.value == other.value

)

class SimpleCustomValueAsDict(Transcoding):
type = SimpleCustomValue
name = "simple_custom_value"

def encode(self, obj: SimpleCustomValue) -> dict:
return {"id": obj.id, "date": obj.date}

def decode(self, data: dict) -> SimpleCustomValue:
assert isinstance(data, dict)
return SimpleCustomValue(**data)

class ComplexCustomValueAsDict(Transcoding):
type = ComplexCustomValue
name = "complex_custom_value"

def encode(self, obj: ComplexCustomValue) -> SimpleCustomValue:
return obj.value

def decode(self, data: SimpleCustomValue) -> ComplexCustomValue:
assert isinstance(data, SimpleCustomValue)
return ComplexCustomValue(data)

The custom value object transcodings can be registered with the transcoder.

transcoder.register(SimpleCustomValueAsDict())
transcoder.register(ComplexCustomValueAsDict())

We can now transcode an instance of ComplexCustomValueAsDict.

obj1 = ComplexCustomValue(
SimpleCustomValue(

id=UUID("b2723fe2c01a40d2875ea3aac6a09ff5"),
date=date(2000, 2, 20)

)
)

data = transcoder.encode(obj1)
copy = transcoder.decode(data)
assert copy == obj1

As you can see from the bytes representation below, the transcoder puts the return value of each transcoding’s
encode() method in a Python dict that has two values _data_ and _type_. The _data_ value is the re-
turn value of the transcoding’s encode() method, and the _type_ value is the name of the transcoding. For this
reason, it is necessary to avoid defining model objects to have a Python dict that has only two attributes _data_
and _type_, and avoid defining transcodings that return such a thing.

expected_data = (
b'{"_type_": "complex_custom_value", "_data_": {"_type_": '
b'"simple_custom_value", "_data_": {"id": {"_type_": '

(continues on next page)

52 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

b'"uuid_hex", "_data_": "b2723fe2c01a40d2875ea3aac6a09ff5"},'
b' "date": {"_type_": "date_iso", "_data_": "2000-02-20"}'
b'}}}'

)
assert data == expected_data

1.6.3 Stored event objects

A stored event object is a common object type that can be used to represent domain event objects of different types.
By using a common object for the representation of different types of domain events objects, the domain event objects
can be stored and retrieved in a standard way.

The library’s StoredEvent class is a Python frozen dataclass that can be used to hold information about a domain
event object between it being serialised and being recorded in a datastore, and between it be retrieved from a datastore
from an aggregate sequence and being deserialised as a domain event object.

from uuid import uuid4

from eventsourcing.persistence import StoredEvent

stored_event = StoredEvent(
originator_id=uuid4(),
originator_version=1,
state="{}",
topic="eventsourcing.model:DomainEvent",

)

1.6.4 Mapper

A mapper maps between domain event objects and stored event objects. It brings together a transcoder, and optionally
a cipher and a compressor. It is used by an event store.

The library’s Mapper class must be constructed with a transcoder object.

from eventsourcing.persistence import Mapper

mapper = Mapper(transcoder=transcoder)

The from_domain_event() method of the mapper object converts DomainEvent objects to StoredEvent
objects.

from eventsourcing.domain import DomainEvent, TZINFO

domain_event1 = DomainEvent(
originator_id = id1,
originator_version = 1,
timestamp = datetime.now(tz=TZINFO),

)

stored_event1 = mapper.from_domain_event(domain_event1)
assert isinstance(stored_event1, StoredEvent)

The to_domain_event() method of the mapper object converts StoredEvent objects to DomainEvent
objects.

1.6. persistence — Infrastructure 53

eventsourcing Documentation, Release 9.0.2

assert mapper.to_domain_event(stored_event1) == domain_event1

1.6.5 Encryption

Using a cryptographic cipher with your mapper will make the state of your application encrypted “at rest” and “on the
wire”.

Without encryption, the state of the domain event will be visible in the recorded stored events in your database. For
example, the timestamp of the domain event in the example above (domain_event1) is visible in the stored
event (stored_event1).

assert domain_event1.timestamp.isoformat() in str(stored_event1.state)

The library’s AESCipher class can be used to cryptographically encode and decode the state of stored events. It must
be constructed with a cipher key. The class method create_key() can be used to generate a cipher key. The AES
cipher key must be either 16, 24, or 32 bytes long. Please note, the same cipher key must be used to decrypt stored
events as that which was used to encrypt stored events.

from eventsourcing.cipher import AESCipher

key = AESCipher.create_key(num_bytes=32) # 16, 24, or 32
cipher = AESCipher(cipher_key=key)

mapper = Mapper(
transcoder=transcoder,
cipher=cipher,

)

stored_event1 = mapper.from_domain_event(domain_event1)
assert isinstance(stored_event1, StoredEvent)
assert mapper.to_domain_event(stored_event1) == domain_event1

With encryption, the state of the domain event will not be visible in the stored event. This feature can be used to
implement “application-level encryption” in an event-sourced application.

assert domain_event1.timestamp.isoformat() not in str(stored_event1.state)

The library’s AESCipher class uses the AES cipher from the PyCryptodome library in GCM mode. AES is a very
fast and secure symmetric block cipher, and is the de facto standard for symmetric encryption. Galois/Counter Mode
(GCM) is a mode of operation for symmetric block ciphers that is designed to provide both data authenticity and
confidentiality, and is widely adopted for its performance.

The mapper expects an instance of the abstract base class Cipher, and AESCipher implements this abstract base
class, so if you want to use another cipher strategy simply implement the base class.

1.6.6 Compression

A compressor can be used to reduce the size of stored events.

The library’s ZlibCompressor class can be used to compress and decompress the state of stored events. The size
of the state of a compressed and encrypted stored event will be less than or equal to the size of the state of a stored
event that is encrypted but not compressed.

54 Chapter 1. Contents

https://pycryptodome.readthedocs.io/en/stable/src/cipher/aes.html
https://pycryptodome.readthedocs.io/en/stable/index.html
https://pycryptodome.readthedocs.io/en/stable/src/cipher/modern.html#gcm-mode

eventsourcing Documentation, Release 9.0.2

from eventsourcing.compressor import ZlibCompressor

compressor = ZlibCompressor()

mapper = Mapper(
transcoder=transcoder,
cipher=cipher,
compressor=compressor,

)

stored_event2 = mapper.from_domain_event(domain_event1)
assert mapper.to_domain_event(stored_event2) == domain_event1

assert len(stored_event2.state) <= len(stored_event1.state)

The library’s ZlibCompressor class uses Python’s zlib module.

The mapper expects an instance of the abstract base class Compressor, and ZlibCompressor implements this
abstract base class, so if you want to use another compression strategy simply implement the base class.

1.6.7 Notification objects

Event notifications are used to propagate the state of an event sourced application in a reliable way. The stored
events can be positioned in a “total order” by giving each a new domain event a notification ID that is higher that any
previously recorded event. By recording the domain events atomically with their notification IDs, there will never be a
domain event that is not available to be passed as a message across a network, and there will never be a message passed
across a network that doesn’t correspond to a recorded event. This solves the “dual writing” problem that occurs when
separately a domain model is updated and then a message is put on a message queue.

The library’s Notification class is a Python frozen dataclass that can be used to hold information about a domain
event object when being transmitted as an item in a section of a notification log. It will be returned when selecting
event notifications from a recorder, and presented in an application by a notification log.

from uuid import uuid4

from eventsourcing.persistence import Notification

stored_event = Notification(
id=123,
originator_id=uuid4(),
originator_version=1,
state="{}",
topic="eventsourcing.model:DomainEvent",

)

1.6.8 Tracking objects

A tracking object can be used to encapsulate the position of an event notification in an upstream application’s notifi-
cation log. A tracking object can be passed into a process recorder along with new stored event objects, and recorded
atomically with those objects. By ensuring the uniqueness of recorded tracking objects, we can ensure that a do-
main event notification is never processed twice. By recording the position of the last event notification that has been
processed, we can ensure to resume processing event notifications at the correct position. This constructs “exactly
once” semantics when processing event notifications, by solving the “dual writing” problem that occurs when sepa-
rately an event notification is consumed from a message queue with updates made to materialized view, and then an
acknowledgement is sent back to the message queue.

1.6. persistence — Infrastructure 55

eventsourcing Documentation, Release 9.0.2

The library’s Tracking class is a Python frozen dataclass that can be used to hold the notification ID of a notification
that has been processed.

from uuid import uuid4

from eventsourcing.persistence import Tracking

tracking = Tracking(
notification_id=123,
application_name="bounded_context1",

)

1.6.9 Recorder

A recorder adapts a database management system for the purpose of recording stored events. It is used by an event
store.

The library’s Recorder class is an abstract base for concrete recorder classes that will insert stored event objects in
a particular datastore.

There are three flavours of recorder: “aggregate recorders” are the simplest and simply store domain events in ag-
gregate sequences; “application recorders” extend aggregate recorders by storing domain events with a total order;
“process recorders” extend application recorders by supporting the recording of domain events atomically with “track-
ing” objects that record the position in a total ordering of domain events that is being processed. The “aggregate
recorder” can be used for storing snapshots.

The library includes in its sqlite module recorder classes for SQLite that use the Python sqlite3 module, and in
its postgres module recorders for PostgreSQL that use the third party psycopg2 module.

Recorder classes are conveniently constructed by using an infrastructure factory. For illustrative purposes, the direct
use of the library’s SQLite recorders is shown below. The other persistence modules follow a similar naming scheme
and pattern of use.

from eventsourcing.sqlite import SQLiteAggregateRecorder
from eventsourcing.sqlite import SQLiteApplicationRecorder
from eventsourcing.sqlite import SQLiteProcessRecorder
from eventsourcing.sqlite import SQLiteDatastore

datastore = SQLiteDatastore(db_name=":memory:")
aggregate_recorder = SQLiteAggregateRecorder(datastore, "snapshots")
aggregate_recorder.create_table()

application_recorder = SQLiteApplicationRecorder(datastore)
application_recorder.create_table()

datastore = SQLiteDatastore(db_name=":memory:")
process_recorder = SQLiteProcessRecorder(datastore)
process_recorder.create_table()

The library also includes in the popo module recorders that use “plain old Python objects”, which simply keep stored
events in a data structure in memory, and provides the fastest alternative for rapid development of event sourced
applications (~4x faster than using SQLite, and ~20x faster than using PostgreSQL).

Recorders compatible with this version of the library for popular ORMs such as SQLAlchemy and Django, specialist
event stores such as EventStoreDB and AxonDB, and NoSQL databases such as DynamoDB and MongoDB are
forthcoming.

56 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

1.6.10 Event store

An event store provides a common interface for storing and retrieving domain event objects. It combines a mapper
and a recorder, so that domain event objects can be converted to stored event objects and then stored event objects can
be recorded in a datastore.

The library’s EventStore class must be constructed with a mapper and a recorder.

The EventStore has an object method put() which can be used to store a list of new domain event objects. If
any of these domain event objects conflict with any already existing domain event object (because they have the same
aggregate ID and version number), an exception will be raised and none of the new events will be stored.

The EventStore has an object method get() which can be used to get a list of domain event objects. Only the
originator_id argument is required, which is the ID of the aggregate for which existing events are wanted. The
arguments gt, lte, limit, and desc condition the selection of events to be greater than a particular version number,
less then or equal to a particular version number, limited in number, or selected in a descending fashion. The selection
is by default ascending, unlimited, and otherwise unrestricted such that all the previously stored domain event objects
for a particular aggregate will be returned in the order in which they were created.

from eventsourcing.persistence import EventStore

event_store = EventStore(
mapper=mapper,
recorder=application_recorder,

)

event_store.put([domain_event1])

domain_events = list(event_store.get(id1))
assert domain_events == [domain_event1]

1.6.11 Infrastructure factory

An infrastructure factory helps with the construction of the persistence infrastructure objects mentioned above. By
reading and responding to particular environment variables, the persistence infrastructure of an event-sourced applica-
tion can be easily configured in different ways at different times.

The library’s InfrastructureFactory class is a base class for concrete infrastructure factories that help with
the construction of persistence objects that use a particular database in a particular way.

The class method construct() will, by default, construct the library’s “plain old Python objects” infras-
tructure Factory , which uses recorders that simply keep stored events in a data structure in memory (see
eventsourcing.popo).

from eventsourcing.persistence import InfrastructureFactory

factory = InfrastructureFactory.construct()

recorder = factory.application_recorder()
mapper = factory.mapper(transcoder=transcoder)
event_store = factory.event_store(

mapper=mapper,
recorder=recorder,

)

event_store.put([domain_event1])

(continues on next page)

1.6. persistence — Infrastructure 57

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

stored_events = list(event_store.get(id1))
assert stored_events == [domain_event1]

1.6.12 SQLite

The module eventsourcing.sqlite supports storing events in SQLite.

The library’s SQLite Factory uses environment variables SQLITE_DBNAME and CREATE_TABLE.

The SQLITE_DBNAME value is the name of a database, normally a file path, but the special name :memory: can be
used to create an in-memory database.

If the tables already exist, the CREATE_TABLE may be set to a “false” value ("n", "no", "f", "false", "off",
or "0"). This value is by default “true” which is normally okay because the tables are created only if they do not exist.

import os

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.sqlite:Factory"
os.environ["SQLITE_DBNAME"] = ":memory:"

factory = InfrastructureFactory.construct()

recorder = factory.application_recorder()
mapper = factory.mapper(transcoder=transcoder)
event_store = factory.event_store(

mapper=mapper,
recorder=recorder,

)

event_store.put([domain_event1])
stored_events = list(event_store.get(id1))
assert stored_events == [domain_event1]

1.6.13 PostgreSQL

The module eventsourcing.postgres supports storing events in PostgresSQL.

The library’s PostgreSQL Factory uses environment variables POSTGRES_DBNAME, POSTGRES_HOST,
POSTGRES_USER, POSTGRES_PASSWORD, and CREATE_TABLE.

The values of POSTGRES_DBNAME, POSTGRES_HOST, POSTGRES_USER, and POSTGRES_PASSWORD are used
to set the name of a database, the database server’s host name, the database user name, and the password for that user.

If the tables already exist, the CREATE_TABLE may be set to a “false” value ("n", "no", "f", "false", "off",
or "0"). This value is by default “true” which is normally okay because the tables are created only if they do not exist.

import os

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.postgres:Factory"
os.environ["POSTGRES_DBNAME"] = "eventsourcing"
os.environ["POSTGRES_HOST"] = "127.0.0.1"
os.environ["POSTGRES_USER"] = "eventsourcing"
os.environ["POSTGRES_PASSWORD"] = "eventsourcing"

58 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

factory = InfrastructureFactory.construct()

recorder = factory.application_recorder()
mapper = factory.mapper(transcoder=transcoder)
event_store = factory.event_store(

mapper=mapper,
recorder=recorder,

)

event_store.put([domain_event1])
stored_events = list(event_store.get(id1))
assert stored_events == [domain_event1]

1.6.14 Classes

class eventsourcing.persistence.Transcoding
Bases: abc.ABC

Abstract base class for custom transcodings.

type
Object type of transcoded object.

name
Name of transcoding.

encode(obj: Any)→ Any
Encodes given object.

decode(data: Any)→ Any
Decodes encoded object.

class eventsourcing.persistence.Transcoder
Bases: abc.ABC

Abstract base class for transcoders.

__init__()→ None
Initialize self. See help(type(self)) for accurate signature.

register(transcoding: eventsourcing.persistence.Transcoding)→ None
Registers given transcoding with the transcoder.

encode(obj: Any)→ bytes
Encodes obj as bytes.

decode(data: bytes)→ Any
Decodes obj from bytes.

class eventsourcing.persistence.JSONTranscoder
Bases: eventsourcing.persistence.Transcoder

Extensible transcoder that uses the Python json module.

__init__()→ None
Initialize self. See help(type(self)) for accurate signature.

encode(obj: Any)→ bytes
Encodes given object as a bytes array.

1.6. persistence — Infrastructure 59

eventsourcing Documentation, Release 9.0.2

decode(data: bytes)→ Any
Decodes bytes array as previously encoded object.

class eventsourcing.persistence.UUIDAsHex
Bases: eventsourcing.persistence.Transcoding

Transcoding that represents UUID objects as hex values.

type
alias of uuid.UUID

encode(obj: uuid.UUID)→ str
Encodes given object.

decode(data: str)→ uuid.UUID
Decodes encoded object.

class eventsourcing.persistence.DecimalAsStr
Bases: eventsourcing.persistence.Transcoding

Transcoding that represents Decimal objects as strings.

type
alias of decimal.Decimal

encode(obj: decimal.Decimal)→ str
Encodes given object.

decode(data: str)→ decimal.Decimal
Decodes encoded object.

class eventsourcing.persistence.DatetimeAsISO
Bases: eventsourcing.persistence.Transcoding

Transcoding that represents datetime objects as ISO strings.

type
alias of datetime.datetime

encode(obj: datetime.datetime)→ str
Encodes given object.

decode(data: str)→ datetime.datetime
Decodes encoded object.

class eventsourcing.persistence.StoredEvent(originator_id: uuid.UUID, origina-
tor_version: int, topic: str, state: bytes)

Bases: object

Frozen dataclass that represents DomainEvent objects, such as aggregate Event objects and Snapshot
objects.

Constructor parameters:

Parameters

• originator_id (int) – ID of the originating aggregate

• originator_id – version of the originating aggregate

• topic (str) – topic of the domain event object class

• state (bytes) – serialised state of the domain event object

60 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

class eventsourcing.persistence.Compressor
Bases: abc.ABC

Base class for compressors.

compress(data: bytes)→ bytes
Compress bytes.

decompress(data: bytes)→ bytes
Decompress bytes.

class eventsourcing.persistence.Cipher(cipher_key: str)
Bases: abc.ABC

Base class for ciphers.

__init__(cipher_key: str)
Initialises cipher with given key.

encrypt(plaintext: bytes)→ bytes
Return ciphertext for given plaintext.

decrypt(ciphertext: bytes)→ bytes
Return plaintext for given ciphertext.

class eventsourcing.persistence.Mapper(transcoder: eventsourc-
ing.persistence.Transcoder, compressor: Op-
tional[eventsourcing.persistence.Compressor]
= None, cipher: Op-
tional[eventsourcing.persistence.Cipher] = None)

Bases: typing.Generic

Converts between domain event objects and StoredEvent objects.

Uses a Transcoder, and optionally a cryptographic cipher and compressor.

__init__(transcoder: eventsourcing.persistence.Transcoder, compressor: Op-
tional[eventsourcing.persistence.Compressor] = None, cipher: Op-
tional[eventsourcing.persistence.Cipher] = None)

Initialize self. See help(type(self)) for accurate signature.

from_domain_event(domain_event: TDomainEvent)→ eventsourcing.persistence.StoredEvent
Converts the given domain event to a StoredEvent object.

to_domain_event(stored: eventsourcing.persistence.StoredEvent)→ TDomainEvent
Converts the given StoredEvent to a domain event object.

exception eventsourcing.persistence.OperationalError
Bases: Exception

exception eventsourcing.persistence.RecordConflictError
Bases: Exception

class eventsourcing.persistence.Recorder
Bases: abc.ABC

Abstract base class for stored event recorders.

class eventsourcing.persistence.AggregateRecorder
Bases: eventsourcing.persistence.Recorder

Abstract base class for recorders that record and retrieve stored events for domain model aggregates.

insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs)→ None
Writes stored events into database.

1.6. persistence — Infrastructure 61

eventsourcing Documentation, Release 9.0.2

select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int]
= None, desc: bool = False, limit: Optional[int] = None) →
List[eventsourcing.persistence.StoredEvent]

Reads stored events from database.

class eventsourcing.persistence.Notification(originator_id: uuid.UUID, origina-
tor_version: int, topic: str, state: bytes, id:
int)

Bases: eventsourcing.persistence.StoredEvent

Frozen dataclass that represents domain event notifications.

class eventsourcing.persistence.ApplicationRecorder
Bases: eventsourcing.persistence.AggregateRecorder

Abstract base class for recorders that record and retrieve stored events for domain model aggregates.

Extends the behaviour of aggregate recorders by recording aggregate events in a total order that allows the stored
events also to be retrieved as event notifications.

select_notifications(start: int, limit: int)→ List[eventsourcing.persistence.Notification]
Returns a list of event notifications from ‘start’, limited by ‘limit’.

max_notification_id()→ int
Returns the maximum notification ID.

class eventsourcing.persistence.ProcessRecorder
Bases: eventsourcing.persistence.ApplicationRecorder

Abstract base class for recorders that record and retrieve stored events for domain model aggregates.

Extends the behaviour of applications recorders by recording aggregate events with tracking information that
records the position of a processed event notification in a notification log.

max_tracking_id(application_name: str)→ int
Returns the last recorded notification ID from given application.

class eventsourcing.persistence.EventStore(mapper: eventsourc-
ing.persistence.Mapper[~TDomainEvent][TDomainEvent],
recorder: eventsourc-
ing.persistence.AggregateRecorder)

Bases: typing.Generic

Stores and retrieves domain events.

__init__(mapper: eventsourcing.persistence.Mapper[~TDomainEvent][TDomainEvent], recorder:
eventsourcing.persistence.AggregateRecorder)

Initialize self. See help(type(self)) for accurate signature.

put(events: List[TDomainEvent], **kwargs)→ None
Stores domain events in aggregate sequence.

get(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int] = None, desc: bool = False,
limit: Optional[int] = None)→ Iterator[TDomainEvent]
Retrieves domain events from aggregate sequence.

class eventsourcing.persistence.InfrastructureFactory(application_name: str)
Bases: abc.ABC

Abstract base class for infrastructure factories.

classmethod construct(application_name: str = ”) → eventsourc-
ing.persistence.InfrastructureFactory

Constructs concrete infrastructure factory for given named application. Reads and resolves infrastructure
factory class topic from environment variable ‘INFRASTRUCTURE_FACTORY’.

62 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

__init__(application_name: str)
Initialises infrastructure factory object with given application name.

getenv(key: str, default: Optional[str] = None, application_name: str = ”)→ Optional[str]
Returns value of environment variable defined by given key.

mapper(transcoder: eventsourcing.persistence.Transcoder, application_name: str = ”)→ eventsourc-
ing.persistence.Mapper

Constructs a mapper.

cipher(application_name: str)→ Optional[eventsourcing.persistence.Cipher]
Reads environment variables ‘CIPHER_TOPIC’ and ‘CIPHER_KEY’ to decide whether or not to con-
struct a cipher.

compressor(application_name: str)→ Optional[eventsourcing.persistence.Compressor]
Reads environment variable ‘COMPRESSOR_TOPIC’ to decide whether or not to construct a compressor.

static event_store(**kwargs)→ eventsourcing.persistence.EventStore
Constructs an event store.

aggregate_recorder(purpose: str = ’events’)→ eventsourcing.persistence.AggregateRecorder
Constructs an aggregate recorder.

application_recorder()→ eventsourcing.persistence.ApplicationRecorder
Constructs an application recorder.

process_recorder()→ eventsourcing.persistence.ProcessRecorder
Constructs a process recorder.

is_snapshotting_enabled()→ bool
Decides whether or not snapshotting is enabled by reading environment variable
‘IS_SNAPSHOTTING_ENABLED’. Snapshotting is not enabled by default.

class eventsourcing.persistence.Tracking(application_name: str, notification_id: int)
Bases: object

Frozen dataclass representing the position of a domain event Notification in an application’s notification
log.

class eventsourcing.popo.POPOAggregateRecorder
Bases: eventsourcing.persistence.AggregateRecorder

__init__()→ None
Initialize self. See help(type(self)) for accurate signature.

insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs)→ None
Writes stored events into database.

select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int]
= None, desc: bool = False, limit: Optional[int] = None) →
List[eventsourcing.persistence.StoredEvent]

Reads stored events from database.

class eventsourcing.popo.POPOApplicationRecorder
Bases: eventsourcing.persistence.ApplicationRecorder, eventsourcing.popo.
POPOAggregateRecorder

select_notifications(start: int, limit: int)→ List[eventsourcing.persistence.Notification]
Returns a list of event notifications from ‘start’, limited by ‘limit’.

max_notification_id()→ int
Returns the maximum notification ID.

1.6. persistence — Infrastructure 63

eventsourcing Documentation, Release 9.0.2

class eventsourcing.popo.POPOProcessRecorder
Bases: eventsourcing.persistence.ProcessRecorder, eventsourcing.popo.
POPOApplicationRecorder

__init__()→ None
Initialize self. See help(type(self)) for accurate signature.

max_tracking_id(application_name: str)→ int
Returns the last recorded notification ID from given application.

class eventsourcing.popo.Factory(application_name: str)
Bases: eventsourcing.persistence.InfrastructureFactory

aggregate_recorder(purpose: str = ’events’)→ eventsourcing.persistence.AggregateRecorder
Constructs an aggregate recorder.

application_recorder()→ eventsourcing.persistence.ApplicationRecorder
Constructs an application recorder.

process_recorder()→ eventsourcing.persistence.ProcessRecorder
Constructs a process recorder.

class eventsourcing.sqlite.SQLiteAggregateRecorder(datastore: eventsourc-
ing.sqlite.SQLiteDatastore,
events_table_name: str =
’stored_events’)

Bases: eventsourcing.persistence.AggregateRecorder

__init__(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = ’stored_events’)
Initialize self. See help(type(self)) for accurate signature.

insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs)→ None
Writes stored events into database.

select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int]
= None, desc: bool = False, limit: Optional[int] = None) →
List[eventsourcing.persistence.StoredEvent]

Reads stored events from database.

class eventsourcing.sqlite.SQLiteApplicationRecorder(datastore: eventsourc-
ing.sqlite.SQLiteDatastore,
events_table_name: str =
’stored_events’)

Bases: eventsourcing.sqlite.SQLiteAggregateRecorder, eventsourcing.
persistence.ApplicationRecorder

__init__(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = ’stored_events’)
Initialize self. See help(type(self)) for accurate signature.

select_notifications(start: int, limit: int)→ List[eventsourcing.persistence.Notification]
Returns a list of event notifications from ‘start’, limited by ‘limit’.

max_notification_id()→ int
Returns the maximum notification ID.

class eventsourcing.sqlite.SQLiteProcessRecorder(datastore: eventsourc-
ing.sqlite.SQLiteDatastore,
events_table_name: str =
’stored_events’)

Bases: eventsourcing.sqlite.SQLiteApplicationRecorder, eventsourcing.
persistence.ProcessRecorder

64 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

__init__(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = ’stored_events’)
Initialize self. See help(type(self)) for accurate signature.

max_tracking_id(application_name: str)→ int
Returns the last recorded notification ID from given application.

class eventsourcing.sqlite.Factory(application_name: str)
Bases: eventsourcing.persistence.InfrastructureFactory

__init__(application_name: str)
Initialises infrastructure factory object with given application name.

aggregate_recorder(purpose: str = ’events’)→ eventsourcing.persistence.AggregateRecorder
Constructs an aggregate recorder.

application_recorder()→ eventsourcing.persistence.ApplicationRecorder
Constructs an application recorder.

process_recorder()→ eventsourcing.persistence.ProcessRecorder
Constructs a process recorder.

class eventsourcing.postgres.PostgresAggregateRecorder(datastore: eventsourc-
ing.postgres.PostgresDatastore,
events_table_name: str)

Bases: eventsourcing.persistence.AggregateRecorder

__init__(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str)
Initialize self. See help(type(self)) for accurate signature.

insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs)→ None
Writes stored events into database.

select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int]
= None, desc: bool = False, limit: Optional[int] = None) →
List[eventsourcing.persistence.StoredEvent]

Reads stored events from database.

class eventsourcing.postgres.PostgresApplicationRecorder(datastore: eventsourc-
ing.postgres.PostgresDatastore,
events_table_name: str =
’stored_events’)

Bases: eventsourcing.postgres.PostgresAggregateRecorder, eventsourcing.
persistence.ApplicationRecorder

__init__(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str =
’stored_events’)

Initialize self. See help(type(self)) for accurate signature.

select_notifications(start: int, limit: int)→ List[eventsourcing.persistence.Notification]
Returns a list of event notifications from ‘start’, limited by ‘limit’.

max_notification_id()→ int
Returns the maximum notification ID.

class eventsourcing.postgres.PostgresProcessRecorder(datastore: eventsourc-
ing.postgres.PostgresDatastore,
events_table_name: str, track-
ing_table_name: str)

Bases: eventsourcing.postgres.PostgresApplicationRecorder, eventsourcing.
persistence.ProcessRecorder

1.6. persistence — Infrastructure 65

eventsourcing Documentation, Release 9.0.2

__init__(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str, track-
ing_table_name: str)

Initialize self. See help(type(self)) for accurate signature.

max_tracking_id(application_name: str)→ int
Returns the last recorded notification ID from given application.

class eventsourcing.postgres.Factory(application_name: str)
Bases: eventsourcing.persistence.InfrastructureFactory

__init__(application_name: str)
Initialises infrastructure factory object with given application name.

aggregate_recorder(purpose: str = ’events’)→ eventsourcing.persistence.AggregateRecorder
Constructs an aggregate recorder.

application_recorder()→ eventsourcing.persistence.ApplicationRecorder
Constructs an application recorder.

process_recorder()→ eventsourcing.persistence.ProcessRecorder
Constructs a process recorder.

1.7 system — Event-driven systems

This module shows how event-sourced applications can be combined to make an event driven system.

this page is under development — please check back soon

1.7.1 System of applications

The library’s system class. . .

from eventsourcing.system import System

from dataclasses import dataclass
from uuid import uuid4

from eventsourcing.domain import Aggregate, AggregateCreated, AggregateEvent

class World(Aggregate):
def __init__(self, **kwargs):

super(World, self).__init__(**kwargs)
self.history = []

@classmethod
def create(cls):

return cls._create(
event_class=cls.Created,
id=uuid4(),

)

class Created(AggregateCreated):
pass

def make_it_so(self, what):

(continues on next page)

66 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

self.trigger_event(self.SomethingHappened, what=what)

class SomethingHappened(AggregateEvent):
what: str

def apply(self, world):
world.history.append(self.what)

Now let’s define an application. . .

from eventsourcing.application import Application

class WorldsApplication(Application):

def create_world(self):
world = World.create()
self.save(world)
return world.id

def make_it_so(self, world_id, what):
world = self.repository.get(world_id)
world.make_it_so(what)
self.save(world)

def get_world_history(self, world_id):
world = self.repository.get(world_id)
return list(world.history)

Now let’s define an analytics application. . .

from uuid import uuid5, NAMESPACE_URL

class Counter(Aggregate):
def __init__(self, **kwargs):

super(Counter, self).__init__(**kwargs)
self.count = 0

@classmethod
def create_id(cls, name):

return uuid5(NAMESPACE_URL, f'/counters/{name}')

@classmethod
def create(cls, name):

return cls._create(
event_class=cls.Created,
id=cls.create_id(name),

)

class Created(AggregateCreated):
pass

def increment(self):
self.trigger_event(self.Incremented)

class Incremented(AggregateEvent):
def apply(self, counter):

(continues on next page)

1.7. system — Event-driven systems 67

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

counter.count += 1

from eventsourcing.application import AggregateNotFound
from eventsourcing.system import ProcessApplication
from eventsourcing.dispatch import singledispatchmethod

class Counters(ProcessApplication):

def policy(self, domain_event, process_event):
pass

@singledispatchmethod
def policy(self, domain_event, process_event):

"""Default policy"""

@policy.register(World.SomethingHappened)
def _(self, domain_event, process_event):

what = domain_event.what
counter_id = Counter.create_id(what)
try:

counter = self.repository.get(counter_id)
except AggregateNotFound:

counter = Counter.create(what)
counter.increment()
process_event.save(counter)

def get_count(self, what):
counter_id = Counter.create_id(what)
try:

counter = self.repository.get(counter_id)
except AggregateNotFound:

return 0
return counter.count

system = System(pipes=[[WorldsApplication, Counters]])

1.7.2 Single-threaded runner

from eventsourcing.system import SingleThreadedRunner

runner= SingleThreadedRunner(system)
runner.start()
worlds = runner.get(WorldsApplication)
counters = runner.get(Counters)

world_id1 = worlds.create_world()
world_id2 = worlds.create_world()
world_id3 = worlds.create_world()

assert counters.get_count('dinosaurs') == 0
assert counters.get_count('trucks') == 0
assert counters.get_count('internet') == 0

(continues on next page)

68 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

worlds.make_it_so(world_id1, 'dinosaurs')
worlds.make_it_so(world_id2, 'dinosaurs')
worlds.make_it_so(world_id3, 'dinosaurs')

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 0
assert counters.get_count('internet') == 0

worlds.make_it_so(world_id1, 'trucks')
worlds.make_it_so(world_id2, 'trucks')

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 2
assert counters.get_count('internet') == 0

worlds.make_it_so(world_id1, 'internet')

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 2
assert counters.get_count('internet') == 1

1.7.3 Multi-threaded runner

from eventsourcing.system import MultiThreadedRunner

runner= MultiThreadedRunner(system)
runner.start()
worlds = runner.get(WorldsApplication)
counters = runner.get(Counters)

world_id1 = worlds.create_world()
world_id2 = worlds.create_world()
world_id3 = worlds.create_world()

worlds.make_it_so(world_id1, 'dinosaurs')
worlds.make_it_so(world_id2, 'dinosaurs')
worlds.make_it_so(world_id3, 'dinosaurs')

worlds.make_it_so(world_id1, 'trucks')
worlds.make_it_so(world_id2, 'trucks')

worlds.make_it_so(world_id1, 'internet')

from time import sleep

sleep(0.01)

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 2
assert counters.get_count('internet') == 1

. . .

1.7. system — Event-driven systems 69

eventsourcing Documentation, Release 9.0.2

1.7.4 Classes

class eventsourcing.system.ProcessEvent(tracking: eventsourcing.persistence.Tracking)
Bases: object

Keeps together a Tracking object, which represents the position of a domain event notification in the notifi-
cation log of a particular application, and the new domain events that result from processing that notification.

__init__(tracking: eventsourcing.persistence.Tracking)
Initalises the process event with the given tracking object.

save(*aggregates)→ None
Collects pending domain events from the given aggregate.

class eventsourcing.system.Follower
Bases: eventsourcing.application.Application

Extends the Application class by using a process recorder as its application recorder, by keeping track of the
applications it is following, and pulling and processing new domain event notifications through its policy()
method.

__init__()→ None
Initialises an application with an InfrastructureFactory , a Mapper, an
ApplicationRecorder, an EventStore, a Repository , and a LocalNotificationLog.

construct_recorder()→ eventsourcing.persistence.ProcessRecorder
Constructs and returns a ProcessRecorder for the application to use as its application recorder.

follow(name: str, log: eventsourcing.application.NotificationLog)→ None
Constructs a notification log reader and a mapper for the named application, and adds them to its collection
of readers.

pull_and_process(name: str)→ None
Pulls and processes unseen domain event notifications from the notification log reader of the names appli-
cation.

Converts received event notifications to domain event objects, and then calls the policy() with a new
ProcessEvent object which contains a Tracking object that keeps track of the name of the appli-
cation and the position in its notification log from which the domain event notification was pulled. The
policy will save aggregates to the process event object, using its save() method, which collects pending
domain events using the aggregates’ collect_events() method, and the process event object will
then be recorded by calling the record() method.

policy(domain_event: eventsourcing.domain.AggregateEvent, process_event: eventsourc-
ing.system.ProcessEvent)→ None

Abstract domain event processing policy method. Must be implemented by event processing applications.
When processing the given domain event, event processing applications must use the save() method of
the given process event object (instead of the application’s save()method) to collect pending events from
changed aggregates, so that the new domain events will be recorded atomically with tracking information
about the position of the given domain event’s notification.

record(process_event: eventsourcing.system.ProcessEvent)→ None
Records given process event in the application’s process recorder.

class eventsourcing.system.Promptable
Bases: abc.ABC

Abstract base class for “promptable” objects.

receive_prompt(leader_name: str)→ None
Receives the name of leader that has new domain event notifications.

70 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

class eventsourcing.system.Leader
Bases: eventsourcing.application.Application

Extends the Application class by also being responsible for keeping track of followers, and prompting
followers when there are new domain event notifications to be pulled and processed.

__init__()→ None
Initialises an application with an InfrastructureFactory , a Mapper, an
ApplicationRecorder, an EventStore, a Repository , and a LocalNotificationLog.

lead(follower: eventsourcing.system.Promptable)→ None
Adds given follower to a list of followers.

notify(new_events: List[eventsourcing.domain.AggregateEvent])→ None
Extends the application notify() method by calling prompt_followers() whenever new events
have just been saved.

prompt_followers()→ None
Prompts followers by calling their receive_prompt() methods with the name of the application.

class eventsourcing.system.ProcessApplication
Bases: eventsourcing.system.Leader, eventsourcing.system.Follower, abc.ABC

Base class for event processing applications that are both “leaders” and followers”.

class eventsourcing.system.System(pipes: Iterable[Iterable[Type[eventsourcing.application.Application]]])
Bases: object

Defines a system of applications.

__init__(pipes: Iterable[Iterable[Type[eventsourcing.application.Application]]])
Initialize self. See help(type(self)) for accurate signature.

class eventsourcing.system.Runner(system: eventsourcing.system.System)
Bases: abc.ABC

Abstract base class for system runners.

__init__(system: eventsourcing.system.System)
Initialize self. See help(type(self)) for accurate signature.

start()→ None
Starts the runner.

stop()→ None
Stops the runner.

get(cls: Type[A])→ A
Returns an application instance for given application class.

exception eventsourcing.system.RunnerAlreadyStarted
Bases: Exception

Raised when runner is already started.

class eventsourcing.system.SingleThreadedRunner(system: eventsourcing.system.System)
Bases: eventsourcing.system.Runner, eventsourcing.system.Promptable

Runs a System in a single thread. A single threaded runner is a runner, and so implements the start(),
stop(), and get() methods. A single threaded runner is also a Promptable object, and implements the
receive_prompt() method by collecting prompted names.

__init__(system: eventsourcing.system.System)
Initialises runner with the given System.

1.7. system — Event-driven systems 71

eventsourcing Documentation, Release 9.0.2

start()→ None
Starts the runner. The applications are constructed, and setup to lead and follow each other, according to
the system definition. The followers are setup to follow the applications they follow (have a notification
log reader with the notification log of the leader), and their leaders are setup to lead the runner itself (send
prompts).

receive_prompt(leader_name: str)→ None
Receives prompt by appending name of leader to list of prompted names. Unless this method has previ-
ously been called but not yet returned, it will then proceed to forward the prompts received to its application
by calling the application’s pull_and_process() method for each prompted name.

stop()→ None
Stops the runner.

get(cls: Type[A])→ A
Returns an application instance for given application class.

class eventsourcing.system.MultiThreadedRunner(system: eventsourcing.system.System)
Bases: eventsourcing.system.Runner

Runs a System with a MultiThreadedRunnerThread for each follower in the system definition. It is a
runner, and so implements the start(), stop(), and get() methods.

__init__(system: eventsourcing.system.System)
Initialises runner with the given System.

start()→ None
Starts the runner.

A multi-threaded runner thread is started for each ‘follower’ application in the system, and constructs an
instance of each non-follower leader application in the system. The followers are then setup to follow the
applications they follow (have a notification log reader with the notification log of the leader), and their
leaders are setup to lead the follower’s thead (send prompts).

stop()→ None
Stops the runner.

get(cls: Type[A])→ A
Returns an application instance for given application class.

class eventsourcing.system.MultiThreadedRunnerThread(app_class:
Type[eventsourcing.system.Follower],
is_stopping: threading.Event)

Bases: eventsourcing.system.Promptable, threading.Thread

Runs one process application for a MultiThreadedRunner.

A multi-threaded runner thread is a Promptable object, and implements the receive_prompt() method
by collecting prompted names and setting its threading event ‘is_prompted’.

A multi-threaded runner thread is a Python threading.Thread object, and implements the thread’s run()
method by waiting until the ‘is_prompted’ event has been set and then calling its process application’s
pull_and_process() method once for each prompted name. It is expected that the process application
will have been set up by the runner with a notification log reader from which event notifications will be pulled.

__init__(app_class: Type[eventsourcing.system.Follower], is_stopping: threading.Event)
Initialize self. See help(type(self)) for accurate signature.

run()→ None
Begins by constructing an application instance from given application class and then loops forever until
stopped. The loop blocks on waiting for the ‘is_prompted’ event to be set, then forwards the prompts

72 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

already received to its application by calling the application’s pull_and_process() method for each
prompted name.

receive_prompt(leader_name: str)→ None
Receives prompt by appending name of leader to list of prompted names.

class eventsourcing.system.NotificationLogReader(notification_log: eventsourc-
ing.application.NotificationLog,
section_size: int = 10)

Bases: object

Reads domain event notifications from a notification log.

__init__(notification_log: eventsourcing.application.NotificationLog, section_size: int = 10)
Initialises a reader with the given notification log, and optionally a section size integer which determines
the requested number of domain event notifications in each section retrieved from the notification log.

read(*, start: int)→ Iterator[eventsourcing.persistence.Notification]
Returns a generator that yields event notifications from the reader’s notification log, starting from given
start position (a notification ID).

This method traverses the linked list of sections presented by a notification log, and yields the individual
event notifications that are contained in each section. When all the event notifications from a section have
been yielded, the reader will retrieve the next section, and continue yielding event notification until all
subsequent event notifications in the notification log from the start position have been yielded.

1.8 interface — Interface

this page is under development — please check back soon

1.8.1 Classes

class eventsourcing.interface.NotificationLogInterface
Bases: abc.ABC

Abstract base class for obtaining serialised sections of a notification log.

get_log_section(section_id: str)→ str
Returns a serialised Section from a notification log.

class eventsourcing.interface.NotificationLogJSONService(app: TApplication)
Bases: eventsourcing.interface.NotificationLogInterface, typing.Generic

Presents serialised sections of a notification log.

__init__(app: TApplication)
Initialises service with given application.

get_log_section(section_id: str)→ str
Returns JSON serialised Section from a notification log.

class eventsourcing.interface.NotificationLogJSONClient(interface: eventsourc-
ing.interface.NotificationLogInterface)

Bases: eventsourcing.application.NotificationLog

Presents deserialized sections of a notification log.

__init__(interface: eventsourcing.interface.NotificationLogInterface)
Initialises log with a given interface.

1.8. interface — Interface 73

eventsourcing Documentation, Release 9.0.2

__getitem__(section_id: str)→ eventsourcing.application.Section
Returns a Section from a notification log.

1.9 Examples

This library contains a few example applications and systems.

this page is under development — please check back soon

import unittest

1.9.1 Bank accounts

Test first. . .

class TestBankAccounts(unittest.TestCase):
def test(self):

app = BankAccounts()

Check account not found error.
with self.assertRaises(AccountNotFoundError):

app.get_balance(uuid4())

Create an account.
account_id1 = app.open_account(

full_name="Alice",
email_address="alice@example.com",

)

Check balance.
self.assertEqual(app.get_balance(account_id1), Decimal("0.00"))

Deposit funds.
app.deposit_funds(

credit_account_id=account_id1,
amount=Decimal("200.00"),

)

Check balance.
self.assertEqual(app.get_balance(account_id1), Decimal("200.00"))

Withdraw funds.
app.withdraw_funds(

debit_account_id=account_id1,
amount=Decimal("50.00"),

)

Check balance.
self.assertEqual(app.get_balance(account_id1), Decimal("150.00"))

Fail to withdraw funds - insufficient funds.
with self.assertRaises(InsufficientFundsError):

app.withdraw_funds(
debit_account_id=account_id1,

(continues on next page)

74 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

amount=Decimal("151.00"),
)

Check balance - should be unchanged.
self.assertEqual(app.get_balance(account_id1), Decimal("150.00"))

Create another account.
account_id2 = app.open_account(

full_name="Bob",
email_address="bob@example.com",

)

Transfer funds.
app.transfer_funds(

debit_account_id=account_id1,
credit_account_id=account_id2,
amount=Decimal("100.00"),

)

Check balances.
self.assertEqual(app.get_balance(account_id1), Decimal("50.00"))
self.assertEqual(app.get_balance(account_id2), Decimal("100.00"))

Fail to transfer funds - insufficient funds.
with self.assertRaises(InsufficientFundsError):

app.transfer_funds(
debit_account_id=account_id1,
credit_account_id=account_id2,
amount=Decimal("1000.00"),

)

Check balances - should be unchanged.
self.assertEqual(app.get_balance(account_id1), Decimal("50.00"))
self.assertEqual(app.get_balance(account_id2), Decimal("100.00"))

Close account.
app.close_account(account_id1)

Fail to transfer funds - account closed.
with self.assertRaises(AccountClosedError):

app.transfer_funds(
debit_account_id=account_id1,
credit_account_id=account_id2,
amount=Decimal("50.00"),

)

Fail to transfer funds - account closed.
with self.assertRaises(AccountClosedError):

app.transfer_funds(
debit_account_id=account_id2,
credit_account_id=account_id1,
amount=Decimal("50.00"),

)

Fail to withdraw funds - account closed.
with self.assertRaises(AccountClosedError):

app.withdraw_funds(
(continues on next page)

1.9. Examples 75

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

debit_account_id=account_id1,
amount=Decimal("1.00"),

)

Fail to deposit funds - account closed.
with self.assertRaises(AccountClosedError):

app.deposit_funds(
credit_account_id=account_id1,
amount=Decimal("1000.00"),

)

Check balance - should be unchanged.
self.assertEqual(app.get_balance(account_id1), Decimal("50.00"))

Check overdraft limit.
self.assertEqual(

app.get_overdraft_limit(account_id2),
Decimal("0.00"),

)

Set overdraft limit.
app.set_overdraft_limit(

account_id=account_id2,
overdraft_limit=Decimal("500.00"),

)

Can't set negative overdraft limit.
with self.assertRaises(AssertionError):

app.set_overdraft_limit(
account_id=account_id2,
overdraft_limit=Decimal("-500.00"),

)

Check overdraft limit.
self.assertEqual(

app.get_overdraft_limit(account_id2),
Decimal("500.00"),

)

Withdraw funds.
app.withdraw_funds(

debit_account_id=account_id2,
amount=Decimal("500.00"),

)

Check balance - should be overdrawn.
self.assertEqual(

app.get_balance(account_id2),
Decimal("-400.00"),

)

Fail to withdraw funds - insufficient funds.
with self.assertRaises(InsufficientFundsError):

app.withdraw_funds(
debit_account_id=account_id2,
amount=Decimal("101.00"),

)
(continues on next page)

76 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

Fail to set overdraft limit - account closed.
with self.assertRaises(AccountClosedError):

app.set_overdraft_limit(
account_id=account_id1,
overdraft_limit=Decimal("500.00"),

)

The application class BankAccounts. . .

class BankAccounts(Application):
def open_account(self, full_name: str, email_address: str) -> UUID:

account = BankAccount.open(
full_name=full_name,
email_address=email_address,

)
self.save(account)
return account.id

def get_account(self, account_id: UUID) -> BankAccount:
try:

aggregate = self.repository.get(account_id)
except AggregateNotFound:

raise AccountNotFoundError(account_id)
else:

assert isinstance(aggregate, BankAccount)
return aggregate

def get_balance(self, account_id: UUID) -> Decimal:
account = self.get_account(account_id)
return account.balance

def deposit_funds(self, credit_account_id: UUID, amount: Decimal) -> None:
account = self.get_account(credit_account_id)
account.append_transaction(amount)
self.save(account)

def withdraw_funds(self, debit_account_id: UUID, amount: Decimal) -> None:
account = self.get_account(debit_account_id)
account.append_transaction(-amount)
self.save(account)

def transfer_funds(
self,
debit_account_id: UUID,
credit_account_id: UUID,
amount: Decimal,

) -> None:
debit_account = self.get_account(debit_account_id)
credit_account = self.get_account(credit_account_id)
debit_account.append_transaction(-amount)
credit_account.append_transaction(amount)
self.save(debit_account, credit_account)

def set_overdraft_limit(self, account_id: UUID, overdraft_limit: Decimal) -> None:
account = self.get_account(account_id)
account.set_overdraft_limit(overdraft_limit)

(continues on next page)

1.9. Examples 77

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

self.save(account)

def get_overdraft_limit(self, account_id: UUID) -> Decimal:
account = self.get_account(account_id)
return account.overdraft_limit

def close_account(self, account_id: UUID) -> None:
account = self.get_account(account_id)
account.close()
self.save(account)

class AccountNotFoundError(Exception):
pass

The aggregate class BankAccount. . .

class BankAccount(Aggregate):
def __init__(self, full_name: str, email_address: str):

self.full_name = full_name
self.email_address = email_address
self.balance = Decimal("0.00")
self.overdraft_limit = Decimal("0.00")
self.is_closed = False

@classmethod
def open(cls, full_name: str, email_address: str) -> "BankAccount":

return cls._create(
cls.Opened,
id=uuid4(),
full_name=full_name,
email_address=email_address,

)

class Opened(AggregateCreated):
full_name: str
email_address: str

def append_transaction(
self, amount: Decimal, transaction_id: Optional[UUID] = None

) -> None:
self.check_account_is_not_closed()
self.check_has_sufficient_funds(amount)
self.trigger_event(

self.TransactionAppended,
amount=amount,
transaction_id=transaction_id,

)

def check_account_is_not_closed(self) -> None:
if self.is_closed:

raise AccountClosedError({"account_id": self.id})

def check_has_sufficient_funds(self, amount: Decimal) -> None:
if self.balance + amount < -self.overdraft_limit:

raise InsufficientFundsError({"account_id": self.id})

(continues on next page)

78 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

class TransactionAppended(AggregateEvent):
amount: Decimal
transaction_id: UUID

def apply(self, aggregate: "BankAccount") -> None:
aggregate.balance += self.amount

def set_overdraft_limit(self, overdraft_limit: Decimal) -> None:
assert overdraft_limit > Decimal("0.00")
self.check_account_is_not_closed()
self.trigger_event(

self.OverdraftLimitSet,
overdraft_limit=overdraft_limit,

)

class OverdraftLimitSet(AggregateEvent):
overdraft_limit: Decimal

def apply(self, aggregate: "BankAccount") -> None:
aggregate.overdraft_limit = self.overdraft_limit

def close(self) -> None:
self.trigger_event(self.Closed)

class Closed(AggregateEvent):
def apply(self, aggregate: "BankAccount") -> None:

aggregate.is_closed = True

class TransactionError(Exception):
pass

class AccountClosedError(TransactionError):
pass

class InsufficientFundsError(TransactionError):
pass

Run the test. . .

suite = unittest.TestSuite()
suite.addTest(TestBankAccounts("test"))

runner = unittest.TextTestRunner()
result = runner.run(suite)

assert result.wasSuccessful()

1.9.2 Cargo shipping

Test first. . .

class TestBookingService(unittest.TestCase):
def setUp(self) -> None:

self.service = BookingService(BookingApplication())

(continues on next page)

1.9. Examples 79

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

def test_admin_can_book_new_cargo(self) -> None:
arrival_deadline = datetime.now(tz=TZINFO) + timedelta(weeks=3)

cargo_id = self.service.book_new_cargo(
origin="NLRTM",
destination="USDAL",
arrival_deadline=arrival_deadline,

)

cargo_details = self.service.get_cargo_details(cargo_id)
self.assertTrue(cargo_details["id"])
self.assertEqual(cargo_details["origin"], "NLRTM")
self.assertEqual(cargo_details["destination"], "USDAL")

self.service.change_destination(cargo_id, destination="AUMEL")
cargo_details = self.service.get_cargo_details(cargo_id)
self.assertEqual(cargo_details["destination"], "AUMEL")
self.assertEqual(

cargo_details["arrival_deadline"],
arrival_deadline,

)

def test_scenario_cargo_from_hongkong_to_stockholm(
self,

) -> None:
Test setup: A cargo should be shipped from
Hongkong to Stockholm, and it should arrive
in no more than two weeks.
origin = "HONGKONG"
destination = "STOCKHOLM"
arrival_deadline = datetime.now(tz=TZINFO) + timedelta(weeks=2)

Use case 1: booking.

A new cargo is booked, and the unique tracking
id is assigned to the cargo.
tracking_id = self.service.book_new_cargo(origin, destination, arrival_

→˓deadline)

The tracking id can be used to lookup the cargo
in the repository.
Important: The cargo, and thus the domain model,
is responsible for determining the status of the
cargo, whether it is on the right track or not
and so on. This is core domain logic. Tracking
the cargo basically amounts to presenting
information extracted from the cargo aggregate
in a suitable way.
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(

cargo_details["transport_status"],
"NOT_RECEIVED",

)
self.assertEqual(cargo_details["routing_status"], "NOT_ROUTED")
self.assertEqual(cargo_details["is_misdirected"], False)
self.assertEqual(

(continues on next page)

80 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

cargo_details["estimated_time_of_arrival"],
None,

)
self.assertEqual(cargo_details["next_expected_activity"], None)

Use case 2: routing.
#
A number of possible routes for this cargo is
requested and may be presented to the customer
in some way for him/her to choose from.
Selection could be affected by things like price
and time of delivery, but this test simply uses
an arbitrary selection to mimic that process.
routes_details = self.service.request_possible_routes_for_cargo(tracking_id)
route_details = select_preferred_itinerary(routes_details)

The cargo is then assigned to the selected
route, described by an itinerary.
self.service.assign_route(tracking_id, route_details)

cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(

cargo_details["transport_status"],
"NOT_RECEIVED",

)
self.assertEqual(cargo_details["routing_status"], "ROUTED")
self.assertEqual(cargo_details["is_misdirected"], False)
self.assertTrue(cargo_details["estimated_time_of_arrival"])
self.assertEqual(

cargo_details["next_expected_activity"],
("RECEIVE", "HONGKONG"),

)

Use case 3: handling

A handling event registration attempt will be
formed from parsing the data coming in as a
handling report either via the web service
interface or as an uploaded CSV file. The
handling event factory tries to create a
HandlingEvent from the attempt, and if the
factory decides that this is a plausible
handling event, it is stored. If the attempt
is invalid, for example if no cargo exists for
the specified tracking id, the attempt is
rejected.
#
Handling begins: cargo is received in Hongkong.
self.service.register_handling_event(tracking_id, None, "HONGKONG", "RECEIVE")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["transport_status"], "IN_PORT")
self.assertEqual(

cargo_details["last_known_location"],
"HONGKONG",

)
self.assertEqual(

cargo_details["next_expected_activity"],
(continues on next page)

1.9. Examples 81

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

("LOAD", "HONGKONG", "V1"),
)

Load onto voyage V1.
self.service.register_handling_event(tracking_id, "V1", "HONGKONG", "LOAD")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["current_voyage_number"], "V1")
self.assertEqual(

cargo_details["last_known_location"],
"HONGKONG",

)
self.assertEqual(

cargo_details["transport_status"],
"ONBOARD_CARRIER",

)
self.assertEqual(

cargo_details["next_expected_activity"],
("UNLOAD", "NEWYORK", "V1"),

)

Incorrectly unload in Tokyo.
self.service.register_handling_event(tracking_id, "V1", "TOKYO", "UNLOAD")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["current_voyage_number"], None)
self.assertEqual(cargo_details["last_known_location"], "TOKYO")
self.assertEqual(cargo_details["transport_status"], "IN_PORT")
self.assertEqual(cargo_details["is_misdirected"], True)
self.assertEqual(cargo_details["next_expected_activity"], None)

Reroute.
routes_details = self.service.request_possible_routes_for_cargo(tracking_id)
route_details = select_preferred_itinerary(routes_details)
self.service.assign_route(tracking_id, route_details)

Load in Tokyo.
self.service.register_handling_event(tracking_id, "V3", "TOKYO", "LOAD")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["current_voyage_number"], "V3")
self.assertEqual(cargo_details["last_known_location"], "TOKYO")
self.assertEqual(

cargo_details["transport_status"],
"ONBOARD_CARRIER",

)
self.assertEqual(cargo_details["is_misdirected"], False)
self.assertEqual(

cargo_details["next_expected_activity"],
("UNLOAD", "HAMBURG", "V3"),

)

Unload in Hamburg.
self.service.register_handling_event(tracking_id, "V3", "HAMBURG", "UNLOAD")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["current_voyage_number"], None)
self.assertEqual(cargo_details["last_known_location"], "HAMBURG")
self.assertEqual(cargo_details["transport_status"], "IN_PORT")
self.assertEqual(cargo_details["is_misdirected"], False)
self.assertEqual(

(continues on next page)

82 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

cargo_details["next_expected_activity"],
("LOAD", "HAMBURG", "V4"),

)

Load in Hamburg
self.service.register_handling_event(tracking_id, "V4", "HAMBURG", "LOAD")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["current_voyage_number"], "V4")
self.assertEqual(cargo_details["last_known_location"], "HAMBURG")
self.assertEqual(

cargo_details["transport_status"],
"ONBOARD_CARRIER",

)
self.assertEqual(cargo_details["is_misdirected"], False)
self.assertEqual(

cargo_details["next_expected_activity"],
("UNLOAD", "STOCKHOLM", "V4"),

)

Unload in Stockholm
self.service.register_handling_event(tracking_id, "V4", "STOCKHOLM", "UNLOAD")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["current_voyage_number"], None)
self.assertEqual(

cargo_details["last_known_location"],
"STOCKHOLM",

)
self.assertEqual(cargo_details["transport_status"], "IN_PORT")
self.assertEqual(cargo_details["is_misdirected"], False)
self.assertEqual(

cargo_details["next_expected_activity"],
("CLAIM", "STOCKHOLM"),

)

Finally, cargo is claimed in Stockholm.
self.service.register_handling_event(tracking_id, None, "STOCKHOLM", "CLAIM")
cargo_details = self.service.get_cargo_details(tracking_id)
self.assertEqual(cargo_details["current_voyage_number"], None)
self.assertEqual(

cargo_details["last_known_location"],
"STOCKHOLM",

)
self.assertEqual(cargo_details["transport_status"], "CLAIMED")
self.assertEqual(cargo_details["is_misdirected"], False)
self.assertEqual(cargo_details["next_expected_activity"], None)

Interface. . .

class BookingService(object):
"""
Presents an application interface that uses
simple types of object (str, bool, datetime).
"""

def __init__(self, app: BookingApplication):
self.app = app

(continues on next page)

1.9. Examples 83

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

def book_new_cargo(
self,
origin: str,
destination: str,
arrival_deadline: datetime,

) -> str:
tracking_id = self.app.book_new_cargo(

Location[origin],
Location[destination],
arrival_deadline,

)
return str(tracking_id)

def get_cargo_details(self, tracking_id: str) -> CargoDetails:
cargo = self.app.get_cargo(UUID(tracking_id))

Present 'next_expected_activity'.
next_expected_activity: Optional[Union[Tuple[Any, Any], Tuple[Any, Any, Any]]]
if cargo.next_expected_activity is None:

next_expected_activity = None
elif len(cargo.next_expected_activity) == 2:

next_expected_activity = (
cargo.next_expected_activity[0].value,
cargo.next_expected_activity[1].value,

)
elif len(cargo.next_expected_activity) == 3:

next_expected_activity = (
cargo.next_expected_activity[0].value,
cargo.next_expected_activity[1].value,
cargo.next_expected_activity[2],

)
else:

raise Exception(
"Invalid next expected activity: {}".format(

cargo.next_expected_activity
)

)

Present 'last_known_location'.
if cargo.last_known_location is None:

last_known_location = None
else:

last_known_location = cargo.last_known_location.value

Present the cargo details.
return {

"id": str(cargo.id),
"origin": cargo.origin.value,
"destination": cargo.destination.value,
"arrival_deadline": cargo.arrival_deadline,
"transport_status": cargo.transport_status,
"routing_status": cargo.routing_status,
"is_misdirected": cargo.is_misdirected,
"estimated_time_of_arrival": cargo.estimated_time_of_arrival,
"next_expected_activity": next_expected_activity,
"last_known_location": last_known_location,
"current_voyage_number": cargo.current_voyage_number,

(continues on next page)

84 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

}

def change_destination(self, tracking_id: str, destination: str) -> None:
self.app.change_destination(UUID(tracking_id), Location[destination])

def request_possible_routes_for_cargo(self, tracking_id: str) -> List[dict]:
routes = self.app.request_possible_routes_for_cargo(UUID(tracking_id))
return [self.dict_from_itinerary(route) for route in routes]

def dict_from_itinerary(self, itinerary: Itinerary) -> ItineraryDetails:
legs_details = []
for leg in itinerary.legs:

leg_details: LegDetails = {
"origin": leg.origin,
"destination": leg.destination,
"voyage_number": leg.voyage_number,

}
legs_details.append(leg_details)

route_details: ItineraryDetails = {
"origin": itinerary.origin,
"destination": itinerary.destination,
"legs": legs_details,

}
return route_details

def assign_route(
self,
tracking_id: str,
route_details: ItineraryDetails,

) -> None:
routes = self.app.request_possible_routes_for_cargo(UUID(tracking_id))
for route in routes:

if route_details == self.dict_from_itinerary(route):
self.app.assign_route(UUID(tracking_id), route)

def register_handling_event(
self,
tracking_id: str,
voyage_number: Optional[str],
location: str,
handling_activity: str,

) -> None:
self.app.register_handling_event(

UUID(tracking_id),
voyage_number,
Location[location],
HandlingActivity[handling_activity],

)

def select_preferred_itinerary(
itineraries: List[ItineraryDetails],

) -> ItineraryDetails:
return itineraries[0]

Application. . .

1.9. Examples 85

eventsourcing Documentation, Release 9.0.2

class BookingApplication(Application):
def register_transcodings(self, transcoder: Transcoder) -> None:

super(BookingApplication, self).register_transcodings(transcoder)
transcoder.register(LocationAsName())
transcoder.register(HandlingActivityAsName())
transcoder.register(ItineraryAsDict())
transcoder.register(LegAsDict())

def book_new_cargo(
self,
origin: Location,
destination: Location,
arrival_deadline: datetime,

) -> UUID:
cargo = Cargo.new_booking(origin, destination, arrival_deadline)
self.save(cargo)
return cargo.id

def change_destination(self, tracking_id: UUID, destination: Location) -> None:
cargo = self.get_cargo(tracking_id)
cargo.change_destination(destination)
self.save(cargo)

def request_possible_routes_for_cargo(self, tracking_id: UUID) -> List[Itinerary]:
cargo = self.get_cargo(tracking_id)
from_location = (cargo.last_known_location or cargo.origin).value
to_location = cargo.destination.value
try:

possible_routes = REGISTERED_ROUTES[(from_location, to_location)]
except KeyError:

raise Exception(
"Can't find routes from {} to {}".format(from_location, to_location)

)

return possible_routes

def assign_route(self, tracking_id: UUID, itinerary: Itinerary) -> None:
cargo = self.get_cargo(tracking_id)
cargo.assign_route(itinerary)
self.save(cargo)

def register_handling_event(
self,
tracking_id: UUID,
voyage_number: Optional[str],
location: Location,
handing_activity: HandlingActivity,

) -> None:
cargo = self.get_cargo(tracking_id)
cargo.register_handling_event(

tracking_id,
voyage_number,
location,
handing_activity,

)
self.save(cargo)

(continues on next page)

86 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

def get_cargo(self, tracking_id: UUID) -> Cargo:
cargo = self.repository.get(tracking_id)
assert isinstance(cargo, Cargo)
return cargo

class HandlingActivityAsName(Transcoding):
type = HandlingActivity
name = "handling_activity"

def encode(self, obj: HandlingActivity) -> str:
return obj.name

def decode(self, data: str) -> HandlingActivity:
assert isinstance(data, str)
return HandlingActivity[data]

class ItineraryAsDict(Transcoding):
type = Itinerary
name = "itinerary"

def encode(self, obj: Itinerary) -> dict:
return obj.__dict__

def decode(self, data: dict) -> Itinerary:
assert isinstance(data, dict)
return Itinerary(**data)

class LegAsDict(Transcoding):
type = Leg
name = "leg"

def encode(self, obj: Leg) -> dict:
return obj.__dict__

def decode(self, data: dict) -> Leg:
assert isinstance(data, dict)
return Leg(**data)

class LocationAsName(Transcoding):
type = Location
name = "location"

def encode(self, obj: Location) -> str:
return obj.name

def decode(self, data: str) -> Location:
assert isinstance(data, str)
return Location[data]

Domain model. . .

class Cargo(Aggregate):
"""
The Cargo aggregate is an event-sourced domain model aggregate that
specifies the routing from origin to destination, and can track what

(continues on next page)

1.9. Examples 87

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

happens to the cargo after it has been booked.
"""

def __init__(
self,
origin: Location,
destination: Location,
arrival_deadline: datetime,

):
self._origin: Location = origin
self._destination: Location = destination
self._arrival_deadline: datetime = arrival_deadline
self._transport_status: str = "NOT_RECEIVED"
self._routing_status: str = "NOT_ROUTED"
self._is_misdirected: bool = False
self._estimated_time_of_arrival: Optional[datetime] = None
self._next_expected_activity: NextExpectedActivity = None
self._route: Optional[Itinerary] = None
self._last_known_location: Optional[Location] = None
self._current_voyage_number: Optional[str] = None

@property
def origin(self) -> Location:

return self._origin

@property
def destination(self) -> Location:

return self._destination

@property
def arrival_deadline(self) -> datetime:

return self._arrival_deadline

@property
def transport_status(self) -> str:

return self._transport_status

@property
def routing_status(self) -> str:

return self._routing_status

@property
def is_misdirected(self) -> bool:

return self._is_misdirected

@property
def estimated_time_of_arrival(

self,
) -> Optional[datetime]:

return self._estimated_time_of_arrival

@property
def next_expected_activity(self) -> Optional[Tuple]:

return self._next_expected_activity

@property
def route(self) -> Optional[Itinerary]:

(continues on next page)

88 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

return self._route

@property
def last_known_location(self) -> Optional[Location]:

return self._last_known_location

@property
def current_voyage_number(self) -> Optional[str]:

return self._current_voyage_number

@classmethod
def new_booking(

cls,
origin: Location,
destination: Location,
arrival_deadline: datetime,

) -> "Cargo":
return cls._create(

event_class=Cargo.BookingStarted,
id=uuid4(),
origin=origin,
destination=destination,
arrival_deadline=arrival_deadline,

)

class BookingStarted(AggregateCreated):
origin: Location
destination: Location
arrival_deadline: datetime

class Event(AggregateEvent["Cargo"]):
def apply(self, aggregate: "Cargo") -> None:

aggregate.apply(self)

@singledispatchmethod
def apply(self, event: "Cargo.Event") -> None:

"""
Default aggregate projection.
"""

def change_destination(self, destination: Location) -> None:
self.trigger_event(

self.DestinationChanged,
destination=destination,

)

class DestinationChanged(Event):
destination: Location

@apply.register(DestinationChanged)
def destination_changed(self, event: DestinationChanged) -> None:

self._destination = event.destination

def assign_route(self, itinerary: Itinerary) -> None:
self.trigger_event(self.RouteAssigned, route=itinerary)

class RouteAssigned(Event):
(continues on next page)

1.9. Examples 89

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

route: Itinerary

@apply.register(RouteAssigned)
def route_assigned(self, event: RouteAssigned) -> None:

self._route = event.route
self._routing_status = "ROUTED"
self._estimated_time_of_arrival = datetime.now(tz=TZINFO) + timedelta(weeks=1)
self._next_expected_activity = (

HandlingActivity.RECEIVE,
self.origin,

)
self._is_misdirected = False

def register_handling_event(
self,
tracking_id: UUID,
voyage_number: Optional[str],
location: Location,
handling_activity: HandlingActivity,

) -> None:
self.trigger_event(

self.HandlingEventRegistered,
tracking_id=tracking_id,
voyage_number=voyage_number,
location=location,
handling_activity=handling_activity,

)

class HandlingEventRegistered(Event):
tracking_id: UUID
voyage_number: str
location: Location
handling_activity: str

@apply.register(HandlingEventRegistered)
def handling_event_registered(self, event: HandlingEventRegistered) -> None:

assert self.route is not None
if event.handling_activity == HandlingActivity.RECEIVE:

self._transport_status = "IN_PORT"
self._last_known_location = event.location
self._next_expected_activity = (

HandlingActivity.LOAD,
event.location,
self.route.legs[0].voyage_number,

)
elif event.handling_activity == HandlingActivity.LOAD:

self._transport_status = "ONBOARD_CARRIER"
self._current_voyage_number = event.voyage_number
for leg in self.route.legs:

if leg.origin == event.location.value:
if leg.voyage_number == event.voyage_number:

self._next_expected_activity = (
HandlingActivity.UNLOAD,
Location[leg.destination],
event.voyage_number,

)
break

(continues on next page)

90 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

else:
raise Exception(

"Can't find leg with origin={} and "
"voyage_number={}".format(

event.location,
event.voyage_number,

)
)

elif event.handling_activity == HandlingActivity.UNLOAD:
self._current_voyage_number = None
self._last_known_location = event.location
self._transport_status = "IN_PORT"
if event.location == self.destination:

self._next_expected_activity = (
HandlingActivity.CLAIM,
event.location,

)
elif event.location.value in [leg.destination for leg in self.route.legs]:

for i, leg in enumerate(self.route.legs):
if leg.voyage_number == event.voyage_number:

next_leg: Leg = self.route.legs[i + 1]
assert Location[next_leg.origin] == event.location
self._next_expected_activity = (

HandlingActivity.LOAD,
event.location,
next_leg.voyage_number,

)
break

else:
self._is_misdirected = True
self._next_expected_activity = None

elif event.handling_activity == HandlingActivity.CLAIM:
self._next_expected_activity = None
self._transport_status = "CLAIMED"

else:
raise Exception(

"Unsupported handling event: {}".format(event.handling_activity)
)

class HandlingActivity(Enum):
RECEIVE = "RECEIVE"
LOAD = "LOAD"
UNLOAD = "UNLOAD"
CLAIM = "CLAIM"

class Itinerary(object):
"""
An itinerary along which cargo is shipped.
"""

def __init__(
self,
origin: str,

(continues on next page)

1.9. Examples 91

eventsourcing Documentation, Release 9.0.2

(continued from previous page)

destination: str,
legs: Tuple[Leg, ...],

):
self.origin = origin
self.destination = destination
self.legs = legs

class Leg(object):
"""
Leg of an itinerary.
"""

def __init__(
self,
origin: str,
destination: str,
voyage_number: str,

):
self.origin: str = origin
self.destination: str = destination
self.voyage_number: str = voyage_number

class Location(Enum):
"""
Locations in the world.
"""

HAMBURG = "HAMBURG"
HONGKONG = "HONGKONG"
NEWYORK = "NEWYORK"
STOCKHOLM = "STOCKHOLM"
TOKYO = "TOKYO"

NLRTM = "NLRTM"
USDAL = "USDAL"
AUMEL = "AUMEL"

Run the test. . .

suite = unittest.TestSuite()
suite.addTest(TestBookingService("test_admin_can_book_new_cargo"))
suite.addTest(TestBookingService("test_scenario_cargo_from_hongkong_to_stockholm"))

runner = unittest.TextTestRunner()
result = runner.run(suite)

assert result.wasSuccessful()

1.10 Release notes

It is the aim of the project that releases with the same major version number are backwards compatible, within the
scope of the documented examples. New major versions indicate backwards incompatible changes have been intro-
duced since the previous major version. New minor version indicate new functionality has been added, or existing

92 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

functionality extended. New point version indicates existing code or documentation has been improved in a way that
neither breaks backwards compatibility nor extends the functionality of the library.

1.10.1 Version 9.x

Version 9.x series is a rewrite of the library that distills most of the best parts of the previous versions of the library into
faster and simpler code. This version is recommended for new projects. It is not backwards-compatible with previous
major versions. However the underlying principles are the same, and so conversion of code and stored events is very
possible.

Version 9.0.2 (released 16 April 2021)

Fixed issue with type hints in PyCharm v2021.1 for methods decorated with the @event decorator.

Version 9.0.1 (released 29 March 2021)

Improved documentation. Moved cipher base class to avoid importing cipher module.

Version 9.0.0 (released 13 March 2021)

First release of the distilled version of the library. Compared with previous versions, the code and documentation
are much simpler, and focus directly on expressing the important concerns without the extraneous detail and optional
alternatives that had been accumulated over the past few years of learning.

The highlight is the new declarative syntax for event sourced domain models.

Dedicated persistence modules for SQLite and PostgresSQL have been introduced, and support for SQLAlchemy and
Django and other databases has been removed (the plan being to support these in separate package distributions).
The default “plain old Python object” infrastructure continues to exist, and now offers event storage and retrieval
performance of around 20x the speed of using PostgreSQL and around 4x the speed of using SQLite in memory.

The storage format is more efficient, because originator IDs and originator versions are removed from the stored state
before serialisation, then reinstated on serialisation.

Database sequences are used generate event notifications rather than the use of “INSERT SELECT” SQL statement
avoids table conflicts that sometimes caused conflicts and exceptions when storing events that could only be resolved
with retries. Although this leads to notification ID sequences that may have gaps, the use of sequences means there is
no risk of event notifications being inserted in the gaps after later event notifications have been processed, which was
the motivation for using gapless sequences in previous versions. The notification log and log reader classes have been
adjusted to support the possible existence of gaps in the notification log sequence.

The transcoder is more easily extensible, with the new style for defining and registering individual transcoding objects
to support individual types of object that are not supported by default.

Domain event classes have been greatly simplified, with the deep hierarchy of entity and event classes removed in
favour of the simple aggregate base class.

The repository class has been changed to provide a single get() method. It no longer supports the Python “indexing”
square-bracket syntax, so that there is just one way to get an aggregate regardless of whether the requested version is
specified or not.

Application configuration of persistence infrastructure is now driven by environment variables rather than constructor
parameters, leading to a simpler interface for application object classes. The mechanism for storing aggregates has
been simplified, so that aggregates are saved using the application “save” method. A new “notify” method has been
added to the application class, to support applications that need to know when new events have just been recorded.

1.10. Release notes 93

eventsourcing Documentation, Release 9.0.2

The mechanism by which aggregates published their events and a “persistence subscriber” subscribed and persisted
published domain events has been completely removed, since aggregates that are saved always need some persistence
infrastructure to store the events, and it is the responsibility of the application to bring together the domain model and
infrastructure, so that when an aggregate can be saved there is always an application.

Process application policy methods are now given a process event object and will use it to collect domain events, using
its “save” method, which has the same method signature as the application “save” method. This allows policies to
accumulate new events on the process event object in the order they were generated, whereas previously if new events
were generated on one aggregate and then a second and then the first, the events of one aggregate would be stored
first and the events of the second aggregate would be stored afterwards, leading to an incorrect ordering of the domain
events in the notification log. The process event object existed in previous versions, was used to keep track of the
position in a notification log of the event notification that was being processed by a policy, and continues to be used
for that purpose.

The system runners have been reduced to the single-threaded and multi-threaded runners, with support for running
with Ray and gRPC and so on removed (the plan being to support these in separate package distributions).

Altogether, these changes mean the core library now depends only on the PythonStandard Library, except for the
optional extra dependencies on a cryptographic library (PyCryptodome) and a PostgresSQL driver (psycopg2), and
the dependencies of development tools. Altogether, these changes make the test suite much faster to run (several
seconds rather than several minutes for the previous version). These changes make the build time on CI services much
quicker (around one minute, rather than nearly ten minutes for the previous version). And these changes make the
library more approachable and fun for users and library developers. Test coverage has been increased to 100% line
and branch coverage. Also mypy and flake8 checking is done.

The documentation has been rewritten to focus more on usage of the library code, and less on explaining surrounding
concepts and considerations.

1.10.2 Version 8.x

Version 8.x series brings more efficient storage, static type hinting, improved transcoding, event and entity version-
ing, and integration with Axon Server (specialist event store) and Ray. Code for defining and running systems of
application, previously in the “application” package, has been moved to a new “system” package.

Version 8.3.0 (released 9 January 2021)

Added gRPC runner. Improved Django record manager, so that it supports setting notification log IDs in the ap-
plication like the SQLAlchemy record manager (this optionally avoids use of the “insert select max” statement and
thereby makes it possible to exclude domain events from the notification log at the risk of non-gapless notification log
sequences). Also improved documentation.

Version 8.2.5 (released 22 Dec 2020)

Increased versions of dependencies on requests, Django, Celery, PyMySQL.

Version 8.2.4 (released 12 Nov 2020)

Fixed issue with using Oracle database, where a trailing semicolon in an SQL statement caused the “invalid character”
error (ORA-00911).

94 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

Version 8.2.3 (released 19 May 2020)

Improved interactions with process applications in RayRunner so that they have the same style as interactions with
process applications in other runners. This makes the RayRunner more interchangeable with the other runners, so that
system client code can be written to work with any runner.

Version 8.2.2 (released 16 May 2020)

Improved documentation. Updated dockerization for local development. Added Makefile, to setup development
environment, to build and run docker containers, to run the test suite, to format the code, and to build the docs.
Reformatted the code.

Version 8.2.1 (released 11 March 2020)

Improved documentation.

Version 8.2.0 (released 10 March 2020)

Added optional versioning of domain events and entities, so that domain events and entity snapshots can be versioned
and old versions of state can be upcast to new versions.

Added optional correlation and causation IDs for domain events, so that a story can be traced through a system of
applications.

Added AxonApplication and AxonRecordManager so that Axon Server can be used as an event store by event-sourced
applications.

Added RayRunner, which allows a system of applications to be run with the Ray framework.

Version 8.1.0 (released 11 January 2020)

Improved documentation. Improved transcoding (e.g. tuples are encoded as tuples also within other collections).
Added event hash method name to event attributes, so that event hashes created with old version of event hashing can
still be checked. Simplified repository base classes (removed “event player” class).

Version 8.0.0 (released 7 December 2019)

The storage of event state has been changed from strings to bytes. This is definitely a backwards incompatible change.
Previously state bytes were encoded with base64 before being saved as strings, which adds 33% to the size of each
stored state. Compression of event state is now an option, independently of encryption, and compression is now
configurable (defaults to zlib module, other compressors can be used). Attention will need to be paid to one of two
alternatives. One alternative is to migrate your stored events (the state field), either from being stored as plaintext
strings to being stored as plaintext bytes (you need to encode as utf-8), or from being stored as ciphertext bytes
encoded with base64 decoded as utf-8 to being stored as ciphertext bytes (you need to encode as utf-8 and decode
base64). The other alternative is to carry on using the same database schema, define custom stored event record
classes in your project (copied from the previous version of the library), and extend the record manager to convert the
bytes to strings and back. A later version of this library may bring support for one or both of these options, so if this
change presents a challenge, please hold off from upgrading, and discuss your situation with the project developer(s).
There is nothing wrong with the previous version, and you can continue to use it.

Other backwards incompatible changes involve renaming a number of methods, and moving classes and also modules
(for example, the system modules have been moved from the applications package to a separate package). Please see
the commit log for all the details.

1.10. Release notes 95

eventsourcing Documentation, Release 9.0.2

This version also brings improved and expanded transcoding, additional type annotations, automatic subclassing on
domain entities of domain events (not enabled by default), an option to apply the policy of a process application to
all events that are generated by its policy when an event notification is processed (continues until all successively
generated events have been processed, with all generated events stored in the same atomic process event, as if all
generated events were generated in a single policy function).

Please note, the transcoding now supports the encoding of tuples, and named tuples, as tuples. Previously tuples were
encoded by the JSON transcoding as lists, and so tuples became lists, which is the default behaviour on the core json
package. So if you have code that depends on the transcoder converting tuples to lists, then attention will have to paid
to the fact that tuples will now be encoded and returned as tuples. However, any existing stored events generated with
an earlier version of this library will continue to be returned as lists, since they were encoded as lists not tuples.

Please note, the system runner class was changed to keep references to constructed process application classes in the
runner object, rather than the system object. If you have code that accesses the process applications as attributes on the
system object, then attention will need to be paid to accessing the process applications by class on the runner object.

1.10.3 Version 7.x

Version 7.x series refined the “process and system” code.

Version 7.2.4 (released 9 Oct 2019)

Version 7.2.4 fixed an issue in running the test suite.

Version 7.2.3 (released 9 Oct 2019)

Version 7.2.3 fixed a bug in MultiThreadedRunner.

Version 7.2.2 (released 6 Oct 2019)

Version 7.2.2 has improved documentation for “reliable projections”.

Version 7.2.1 (released 6 Oct 2019)

Version 7.2.1 has improved support for “reliable projections”, which allows custom records to be deleted (previously
only create and update was supported). The documentation for “reliable projections” was improved. The previous
code snippet, which was merely suggestive, was replaced by a working example.

Version 7.2.0 (released 1 Oct 2019)

Version 7.2.0 has support for “reliable projections” into custom ORM objects that can be coded as process application
policies.

Also a few issues were resolved: avoiding importing Django models from library when custom models are being used
to store events prevents model conflicts; fixed multiprocess runner to work when an application is not being followed
by another; process applications now reflect off the sequenced item tuple when reading notifications so that custom
field names are used.

96 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

Version 7.1.6 (released 2 Aug 2019)

Version 7.1.6 fixed an issue with the notification log reader. The notification log reader was sometimes using a “fast
path” to get all the notifications without paging through the notification log using the linked sections. However, when
there were too many notification, this failed to work. A few adjustments were made to fix the performance and
robustness and configurability of the notification log reading functionality.

Version 7.1.5 (released 26 Jul 2019)

Version 7.1.5 improved the library documentation with better links to module reference pages. The versions of de-
pendencies were also updated, so that all versions of dependencies are the current stable versions of the package
distributions on PyPI. In particular, requests was updated to a version that fixes a security vulnerability.

Version 7.1.4 (released 10 Jul 2019)

Version 7.1.4 improved the library documentation.

Version 7.1.3 (released 4 Jul 2019)

Version 7.1.3 improved the domain model layer documentation.

Version 7.1.2 (released 26 Jun 2019)

Version 7.1.2 fixed method ‘construct_app()’ on class ‘System’ to set ‘setup_table’ on its process applications using
the system’s value of ‘setup_tables’. Also updated version of dependency of SQLAlchemy-Utils.

Version 7.1.1 (released 21 Jun 2019)

Version 7.1.1 added ‘Support options’ and ‘Contributing’ sections to the documentation.

Version 7.1.0 (released 11 Jun 2019)

Version 7.1.0 improved structure to the documentation.

Version 7.0.0 (released 21 Feb 2019)

Version 7.0.0 brought many incremental improvements across the library, especially the ability to define an entire
system of process applications independently of infrastructure. Please note, records fields have been renamed.

1.10.4 Version 6.x

Version 6.x series was the first release of the “process and system” code.

1.10. Release notes 97

eventsourcing Documentation, Release 9.0.2

Version 6.2.0 (released 15 Jul 2018)

Version 6.2.0 (released 26 Jun 2018)

Version 6.1.0 (released 14 Jun 2018)

Version 6.0.0 (released 23 Apr 2018)

1.10.5 Version 5.x

Version 5.x added support for Django ORM. It was released as a new major version after quite a lot of refactoring
made things backward-incompatible.

Version 5.1.1 (released 4 Apr 2018)

Version 5.1.0 (released 16 Feb 2018)

Version 5.0.0 (released 24 Jan 2018)

Support for Django ORM was added in version 5.0.0.

1.10.6 Version 4.x

Version 4.x series was released after quite a lot of refactoring made things backward-incompatible. Object namespaces
for entity and event classes was cleaned up, by moving library names to double-underscore prefixed and postfixed
names. Domain events can be hashed, and also hash-chained together, allowing entity state to be verified. Created
events were changed to have originator_topic, which allowed other things such as mutators and repositories to be
greatly simplified. Mutators are now by default expected to be implemented on entity event classes. Event timestamps
were changed from floats to decimal objects, an exact number type. Cipher was changed to use AES-GCM to allow
verification of encrypted data retrieved from a database.

Also, the record classes for SQLAlchemy were changed to have an auto-incrementing ID, to make it easy to follow
the events of an application, for example when updating view models, without additional complication of a separate
application log. This change makes the SQLAlchemy library classes ultimately less “scalable” than the Cassandra
classes, because an auto-incrementing ID must operate from a single thread. Overall, it seems like a good trade-off
for early-stage development. Later, when the auto-incrementing ID bottleneck would otherwise throttle performance,
“scaling-up” could involve switching application infrastructure to use a separate application log.

Version 4.0.0 (released 11 Dec 2017)

1.10.7 Version 3.x

Version 3.x series was a released after quite of a lot of refactoring made things backwards-incompatible. Documen-
tation was greatly improved, in particular with pages reflecting the architectural layers of the library (infrastructure,
domain, application).

Version 3.1.0 (released 23 Nov 2017)

98 Chapter 1. Contents

eventsourcing Documentation, Release 9.0.2

Version 3.0.0 (released 25 May 2017)

1.10.8 Version 2.x

Version 2.x series was a major rewrite that implemented two distinct kinds of sequences: events sequenced by integer
version numbers and events sequenced in time, with an archetypal “sequenced item” persistence model for storing
events.

Version 2.1.1 (released 30 Mar 2017)

Version 2.1.0 (released 27 Mar 2017)

Version 2.0.0 (released 27 Mar 2017)

1.10.9 Version 1.x

Version 1.x series was an extension of the version 0.x series, and attempted to bridge between sequencing events with
both timestamps and version numbers.

Version 1.2.1 (released 23 Oct 2016)

Version 1.2.0 (released 23 Oct 2016)

Version 1.1.0 (released 19 Oct 2016)

Version 1.0.10 (released 5 Oct 2016)

Version 1.0.9 (released 17 Aug 2016)

Version 1.0.8 (released 30 Jul 2016)

Version 1.0.7 (released 13 Jul 2016)

Version 1.0.6 (released 7 Jul 2016)

Version 1.0.5 (released 1 Jul 2016)

Version 1.0.4 (released 30 Jun 2016)

Version 1.0.3 (released 30 Jun 2016)

Version 1.0.2 (released 8 Jun 2016)

Version 1.0.1 (released 7 Jun 2016)

1.10.10 Version 0.x

Version 0.x series was the initial cut of the code, all events were sequenced by timestamps, or TimeUUIDs in Cassan-
dra, because the project originally emerged whilst working with Cassandra.

1.10. Release notes 99

eventsourcing Documentation, Release 9.0.2

Version 0.9.4 (released 11 Feb 2016)

Version 0.9.3 (released 1 Dec 2015)

Version 0.9.2 (released 1 Dec 2015)

Version 0.9.1 (released 10 Nov 2015)

Version 0.9.0 (released 14 Sep 2015)

Version 0.8.4 (released 14 Sep 2015)

Version 0.8.3 (released 5 Sep 2015)

Version 0.8.2 (released 5 Sep 2015)

Version 0.8.1 (released 4 Sep 2015)

Version 0.8.0 (released 29 Aug 2015)

Version 0.7.0 (released 29 Aug 2015)

Version 0.6.0 (released 28 Aug 2015)

Version 0.5.0 (released 28 Aug 2015)

Version 0.4.0 (released 28 Aug 2015)

Version 0.3.0 (released 28 Aug 2015)

Version 0.2.0 (released 27 Aug 2015)

Version 0.1.0 (released 27 Aug 2015)

Version 0.0.1 (released 27 Aug 2015)

100 Chapter 1. Contents

CHAPTER 2

Modules Reference

• genindex

• modindex

101

eventsourcing Documentation, Release 9.0.2

102 Chapter 2. Modules Reference

Python Module Index

e
eventsourcing.application, 46
eventsourcing.cipher, 47
eventsourcing.compressor, 48
eventsourcing.domain, 32
eventsourcing.interface, 73
eventsourcing.persistence, 59
eventsourcing.popo, 63
eventsourcing.postgres, 65
eventsourcing.sqlite, 64
eventsourcing.system, 70
eventsourcing.utils, 37

103

eventsourcing Documentation, Release 9.0.2

104 Python Module Index

Index

Symbols
__base_init__() (eventsourcing.domain.Aggregate

method), 36
__call__() (eventsourcing.domain.BoundEvent

method), 35
__call__() (eventsourcing.domain.MetaAggregate

method), 35
__getitem__() (eventsourc-

ing.application.LocalNotificationLog method),
47

__getitem__() (eventsourc-
ing.application.NotificationLog method),
46

__getitem__() (eventsourc-
ing.interface.NotificationLogJSONClient
method), 73

__init__() (eventsourcing.application.Application
method), 47

__init__() (eventsourc-
ing.application.LocalNotificationLog method),
46

__init__() (eventsourcing.application.Repository
method), 46

__init__() (eventsourcing.cipher.AESCipher
method), 48

__init__() (eventsourcing.domain.BoundEvent
method), 35

__init__() (eventsourcing.domain.MetaAggregate
method), 35

__init__() (eventsourc-
ing.domain.MetaDomainEvent method),
33

__init__() (eventsourc-
ing.interface.NotificationLogJSONClient
method), 73

__init__() (eventsourc-
ing.interface.NotificationLogJSONService
method), 73

__init__() (eventsourcing.persistence.Cipher

method), 61
__init__() (eventsourcing.persistence.EventStore

method), 62
__init__() (eventsourc-

ing.persistence.InfrastructureFactory method),
63

__init__() (eventsourc-
ing.persistence.JSONTranscoder method),
59

__init__() (eventsourcing.persistence.Mapper
method), 61

__init__() (eventsourcing.persistence.Transcoder
method), 59

__init__() (eventsourc-
ing.popo.POPOAggregateRecorder method),
63

__init__() (eventsourc-
ing.popo.POPOProcessRecorder method),
64

__init__() (eventsourcing.postgres.Factory method),
66

__init__() (eventsourc-
ing.postgres.PostgresAggregateRecorder
method), 65

__init__() (eventsourc-
ing.postgres.PostgresApplicationRecorder
method), 65

__init__() (eventsourc-
ing.postgres.PostgresProcessRecorder
method), 65

__init__() (eventsourcing.sqlite.Factory method), 65
__init__() (eventsourc-

ing.sqlite.SQLiteAggregateRecorder method),
64

__init__() (eventsourc-
ing.sqlite.SQLiteApplicationRecorder method),
64

__init__() (eventsourc-
ing.sqlite.SQLiteProcessRecorder method),
64

105

eventsourcing Documentation, Release 9.0.2

__init__() (eventsourcing.system.Follower method),
70

__init__() (eventsourcing.system.Leader method),
71

__init__() (eventsourc-
ing.system.MultiThreadedRunner method),
72

__init__() (eventsourc-
ing.system.MultiThreadedRunnerThread
method), 72

__init__() (eventsourc-
ing.system.NotificationLogReader method),
73

__init__() (eventsourcing.system.ProcessEvent
method), 70

__init__() (eventsourcing.system.Runner method),
71

__init__() (eventsourc-
ing.system.SingleThreadedRunner method),
71

__init__() (eventsourcing.system.System method), 71
__new__() (eventsourcing.domain.Aggregate static

method), 36
__new__() (eventsourcing.domain.MetaAggregate

static method), 35
__new__() (eventsourcing.domain.MetaDomainEvent

static method), 32
_create() (eventsourcing.domain.MetaAggregate

method), 35

A
AESCipher (class in eventsourcing.cipher), 47
Aggregate (class in eventsourcing.domain), 36
aggregate() (in module eventsourcing.domain), 36
Aggregate.Created (class in eventsourc-

ing.domain), 36
aggregate_recorder() (eventsourc-

ing.persistence.InfrastructureFactory method),
63

aggregate_recorder() (eventsourc-
ing.popo.Factory method), 64

aggregate_recorder() (eventsourc-
ing.postgres.Factory method), 66

aggregate_recorder() (eventsourc-
ing.sqlite.Factory method), 65

AggregateCreated (class in eventsourcing.domain),
33

AggregateEvent (class in eventsourcing.domain), 33
AggregateNotFound, 47
AggregateRecorder (class in eventsourc-

ing.persistence), 61
Application (class in eventsourcing.application), 47
application_recorder() (eventsourc-

ing.persistence.InfrastructureFactory method),

63
application_recorder() (eventsourc-

ing.popo.Factory method), 64
application_recorder() (eventsourc-

ing.postgres.Factory method), 66
application_recorder() (eventsourc-

ing.sqlite.Factory method), 65
ApplicationRecorder (class in eventsourc-

ing.persistence), 62
apply() (eventsourcing.domain.AggregateEvent

method), 33
apply() (eventsourcing.domain.DecoratedEvent

method), 35

B
BoundEvent (class in eventsourcing.domain), 35

C
Cipher (class in eventsourcing.persistence), 61
cipher() (eventsourc-

ing.persistence.InfrastructureFactory method),
63

collect_events() (eventsourc-
ing.domain.Aggregate method), 36

compress() (eventsourc-
ing.compressor.ZlibCompressor method),
48

compress() (eventsourcing.persistence.Compressor
method), 61

Compressor (class in eventsourcing.persistence), 60
compressor() (eventsourc-

ing.persistence.InfrastructureFactory method),
63

construct() (eventsourc-
ing.persistence.InfrastructureFactory class
method), 62

construct_event_store() (eventsourc-
ing.application.Application method), 47

construct_factory() (eventsourc-
ing.application.Application method), 47

construct_mapper() (eventsourc-
ing.application.Application method), 47

construct_notification_log() (eventsourc-
ing.application.Application method), 47

construct_recorder() (eventsourc-
ing.application.Application method), 47

construct_recorder() (eventsourc-
ing.system.Follower method), 70

construct_repository() (eventsourc-
ing.application.Application method), 47

construct_snapshot_store() (eventsourc-
ing.application.Application method), 47

construct_transcoder() (eventsourc-
ing.application.Application method), 47

106 Index

eventsourcing Documentation, Release 9.0.2

create_id() (eventsourcing.domain.MetaAggregate
static method), 35

create_key() (eventsourcing.cipher.AESCipher
static method), 48

created_on (eventsourcing.domain.Aggregate at-
tribute), 36

D
DatetimeAsISO (class in eventsourcing.persistence),

60
DecimalAsStr (class in eventsourcing.persistence), 60
decode() (eventsourcing.persistence.DatetimeAsISO

method), 60
decode() (eventsourcing.persistence.DecimalAsStr

method), 60
decode() (eventsourcing.persistence.JSONTranscoder

method), 59
decode() (eventsourcing.persistence.Transcoder

method), 59
decode() (eventsourcing.persistence.Transcoding

method), 59
decode() (eventsourcing.persistence.UUIDAsHex

method), 60
decompress() (eventsourc-

ing.compressor.ZlibCompressor method),
48

decompress() (eventsourc-
ing.persistence.Compressor method), 61

DecoratedEvent (class in eventsourcing.domain), 35
decrypt() (eventsourcing.cipher.AESCipher method),

48
decrypt() (eventsourcing.persistence.Cipher method),

61
DomainEvent (class in eventsourcing.domain), 33

E
encode() (eventsourcing.persistence.DatetimeAsISO

method), 60
encode() (eventsourcing.persistence.DecimalAsStr

method), 60
encode() (eventsourcing.persistence.JSONTranscoder

method), 59
encode() (eventsourcing.persistence.Transcoder

method), 59
encode() (eventsourcing.persistence.Transcoding

method), 59
encode() (eventsourcing.persistence.UUIDAsHex

method), 60
encrypt() (eventsourcing.cipher.AESCipher method),

48
encrypt() (eventsourcing.persistence.Cipher method),

61
Event (eventsourcing.domain.Aggregate attribute), 36
event() (in module eventsourcing.domain), 33

event_store() (eventsourc-
ing.persistence.InfrastructureFactory static
method), 63

eventsourcing.application (module), 46
eventsourcing.cipher (module), 47
eventsourcing.compressor (module), 48
eventsourcing.domain (module), 32
eventsourcing.interface (module), 73
eventsourcing.persistence (module), 59
eventsourcing.popo (module), 63
eventsourcing.postgres (module), 65
eventsourcing.sqlite (module), 64
eventsourcing.system (module), 70
eventsourcing.utils (module), 37
EventStore (class in eventsourcing.persistence), 62

F
Factory (class in eventsourcing.popo), 64
Factory (class in eventsourcing.postgres), 66
Factory (class in eventsourcing.sqlite), 65
follow() (eventsourcing.system.Follower method), 70
Follower (class in eventsourcing.system), 70
from_domain_event() (eventsourc-

ing.persistence.Mapper method), 61

G
get() (eventsourcing.application.Repository method),

46
get() (eventsourcing.persistence.EventStore method),

62
get() (eventsourcing.system.MultiThreadedRunner

method), 72
get() (eventsourcing.system.Runner method), 71
get() (eventsourcing.system.SingleThreadedRunner

method), 72
get_log_section() (eventsourc-

ing.interface.NotificationLogInterface method),
73

get_log_section() (eventsourc-
ing.interface.NotificationLogJSONService
method), 73

get_topic() (in module eventsourcing.utils), 37
getenv() (eventsourc-

ing.persistence.InfrastructureFactory method),
63

I
id (eventsourcing.domain.Aggregate attribute), 36
InfrastructureFactory (class in eventsourc-

ing.persistence), 62
insert_events() (eventsourc-

ing.persistence.AggregateRecorder method),
61

Index 107

eventsourcing Documentation, Release 9.0.2

insert_events() (eventsourc-
ing.popo.POPOAggregateRecorder method),
63

insert_events() (eventsourc-
ing.postgres.PostgresAggregateRecorder
method), 65

insert_events() (eventsourc-
ing.sqlite.SQLiteAggregateRecorder method),
64

is_snapshotting_enabled() (eventsourc-
ing.persistence.InfrastructureFactory method),
63

J
JSONTranscoder (class in eventsourcing.persistence),

59

L
lead() (eventsourcing.system.Leader method), 71
Leader (class in eventsourcing.system), 70
LocalNotificationLog (class in eventsourc-

ing.application), 46

M
Mapper (class in eventsourcing.persistence), 61
mapper() (eventsourc-

ing.persistence.InfrastructureFactory method),
63

max_notification_id() (eventsourc-
ing.persistence.ApplicationRecorder method),
62

max_notification_id() (eventsourc-
ing.popo.POPOApplicationRecorder method),
63

max_notification_id() (eventsourc-
ing.postgres.PostgresApplicationRecorder
method), 65

max_notification_id() (eventsourc-
ing.sqlite.SQLiteApplicationRecorder method),
64

max_tracking_id() (eventsourc-
ing.persistence.ProcessRecorder method),
62

max_tracking_id() (eventsourc-
ing.popo.POPOProcessRecorder method),
64

max_tracking_id() (eventsourc-
ing.postgres.PostgresProcessRecorder
method), 66

max_tracking_id() (eventsourc-
ing.sqlite.SQLiteProcessRecorder method),
65

MetaAggregate (class in eventsourcing.domain), 35

MetaDomainEvent (class in eventsourcing.domain),
32

MultiThreadedRunner (class in eventsourc-
ing.system), 72

MultiThreadedRunnerThread (class in
eventsourcing.system), 72

mutate() (eventsourcing.domain.AggregateCreated
method), 33

mutate() (eventsourcing.domain.AggregateEvent
method), 33

mutate() (eventsourcing.domain.Snapshot method), 37

N
name (eventsourcing.persistence.Transcoding attribute),

59
Notification (class in eventsourcing.persistence), 62
NotificationLog (class in eventsourc-

ing.application), 46
NotificationLogInterface (class in eventsourc-

ing.interface), 73
NotificationLogJSONClient (class in

eventsourcing.interface), 73
NotificationLogJSONService (class in

eventsourcing.interface), 73
NotificationLogReader (class in eventsourc-

ing.system), 73
notify() (eventsourcing.application.Application

method), 47
notify() (eventsourcing.system.Leader method), 71

O
OperationalError, 61

P
pending_events (eventsourcing.domain.Aggregate

attribute), 36
policy() (eventsourcing.system.Follower method), 70
POPOAggregateRecorder (class in eventsourc-

ing.popo), 63
POPOApplicationRecorder (class in eventsourc-

ing.popo), 63
POPOProcessRecorder (class in eventsourc-

ing.popo), 63
PostgresAggregateRecorder (class in

eventsourcing.postgres), 65
PostgresApplicationRecorder (class in

eventsourcing.postgres), 65
PostgresProcessRecorder (class in eventsourc-

ing.postgres), 65
process_recorder() (eventsourc-

ing.persistence.InfrastructureFactory method),
63

process_recorder() (eventsourcing.popo.Factory
method), 64

108 Index

eventsourcing Documentation, Release 9.0.2

process_recorder() (eventsourc-
ing.postgres.Factory method), 66

process_recorder() (eventsourcing.sqlite.Factory
method), 65

ProcessApplication (class in eventsourc-
ing.system), 71

ProcessEvent (class in eventsourcing.system), 70
ProcessRecorder (class in eventsourc-

ing.persistence), 62
prompt_followers() (eventsourcing.system.Leader

method), 71
Promptable (class in eventsourcing.system), 70
pull_and_process() (eventsourc-

ing.system.Follower method), 70
put() (eventsourcing.persistence.EventStore method),

62

R
read() (eventsourcing.system.NotificationLogReader

method), 73
receive_prompt() (eventsourc-

ing.system.MultiThreadedRunnerThread
method), 73

receive_prompt() (eventsourc-
ing.system.Promptable method), 70

receive_prompt() (eventsourc-
ing.system.SingleThreadedRunner method),
72

record() (eventsourcing.system.Follower method), 70
RecordConflictError, 61
Recorder (class in eventsourcing.persistence), 61
register() (eventsourcing.persistence.Transcoder

method), 59
register_transcodings() (eventsourc-

ing.application.Application method), 47
Repository (class in eventsourcing.application), 46
resolve_topic() (in module eventsourcing.utils), 37
run() (eventsourcing.system.MultiThreadedRunnerThread

method), 72
Runner (class in eventsourcing.system), 71
RunnerAlreadyStarted, 71

S
save() (eventsourcing.application.Application

method), 47
save() (eventsourcing.system.ProcessEvent method),

70
Section (class in eventsourcing.application), 46
select_events() (eventsourc-

ing.persistence.AggregateRecorder method),
61

select_events() (eventsourc-
ing.popo.POPOAggregateRecorder method),
63

select_events() (eventsourc-
ing.postgres.PostgresAggregateRecorder
method), 65

select_events() (eventsourc-
ing.sqlite.SQLiteAggregateRecorder method),
64

select_notifications() (eventsourc-
ing.persistence.ApplicationRecorder method),
62

select_notifications() (eventsourc-
ing.popo.POPOApplicationRecorder method),
63

select_notifications() (eventsourc-
ing.postgres.PostgresApplicationRecorder
method), 65

select_notifications() (eventsourc-
ing.sqlite.SQLiteApplicationRecorder method),
64

SingleThreadedRunner (class in eventsourc-
ing.system), 71

Snapshot (class in eventsourcing.domain), 36
SQLiteAggregateRecorder (class in eventsourc-

ing.sqlite), 64
SQLiteApplicationRecorder (class in

eventsourcing.sqlite), 64
SQLiteProcessRecorder (class in eventsourc-

ing.sqlite), 64
start() (eventsourcing.system.MultiThreadedRunner

method), 72
start() (eventsourcing.system.Runner method), 71
start() (eventsourcing.system.SingleThreadedRunner

method), 71
stop() (eventsourcing.system.MultiThreadedRunner

method), 72
stop() (eventsourcing.system.Runner method), 71
stop() (eventsourcing.system.SingleThreadedRunner

method), 72
StoredEvent (class in eventsourcing.persistence), 60
System (class in eventsourcing.system), 71

T
take() (eventsourcing.domain.Snapshot class method),

37
take_snapshot() (eventsourc-

ing.application.Application method), 47
to_domain_event() (eventsourc-

ing.persistence.Mapper method), 61
Tracking (class in eventsourcing.persistence), 63
Transcoder (class in eventsourcing.persistence), 59
Transcoding (class in eventsourcing.persistence), 59
trigger_event() (eventsourcing.domain.Aggregate

method), 36
triggers() (in module eventsourcing.domain), 34

Index 109

eventsourcing Documentation, Release 9.0.2

type (eventsourcing.persistence.DatetimeAsISO at-
tribute), 60

type (eventsourcing.persistence.DecimalAsStr at-
tribute), 60

type (eventsourcing.persistence.Transcoding attribute),
59

type (eventsourcing.persistence.UUIDAsHex attribute),
60

U
UUIDAsHex (class in eventsourcing.persistence), 60

V
VersionError, 36

Z
ZlibCompressor (class in eventsourc-

ing.compressor), 48

110 Index

	Contents
	Introduction
	Installation guide
	Support options
	domain — Domain models
	application — Applications
	persistence — Infrastructure
	system — Event-driven systems
	interface — Interface
	Examples
	Release notes

	Modules Reference
	Python Module Index
	Index

