

Event Sourcing in Python

A library for event sourcing in Python.
This project is hosted on GitHub [https://github.com/johnbywater/eventsourcing].

Contents

	Introduction
	What is event sourcing?

	This library

	Features

	Design overview

	Register issues

	Installation guide
	Install options

	Developers

	Support options
	Professional support

	Training workshops

	Community support

	Support the project

	domain — Domain models
	Aggregates in DDD

	Event-sourced aggregates

	Basic example

	Domain events

	Snapshots

	Initial Version Number

	Versioning

	Namespaced IDs

	Declarative syntax

	Topics

	Classes

	application — Applications
	Domain-driven design

	Application objects

	Basic example

	Repository

	Notification log

	Snapshotting

	Configuring persistence

	Registering custom transcodings

	Encryption and compression

	Saving multiple aggregates

	Classes

	persistence — Infrastructure
	Transcoder

	Transcodings

	Stored event objects

	Mapper

	Encryption

	Compression

	Notification objects

	Tracking objects

	Recorder

	Event store

	Infrastructure factory

	SQLite

	PostgreSQL

	Classes

	system — Event-driven systems
	System of applications

	Single-threaded runner

	Multi-threaded runner

	Classes

	interface — Interface
	Classes

	Examples
	Bank accounts

	Cargo shipping

	Release notes
	Version 9.x

	Version 8.x

	Version 7.x

	Version 6.x

	Version 5.x

	Version 4.x

	Version 3.x

	Version 2.x

	Version 1.x

	Version 0.x

Modules Reference

	Index

	Module Index

Introduction

What is event sourcing?

One definition of event sourcing suggests the state of an
event-sourced application is determined by a sequence of events.
Another definition has event sourcing as a persistence mechanism
for domain-driven design.

Whilst the basic event sourcing patterns are quite simple and
can be reproduced in code for each project, event sourcing as a
persistence mechanism for domain-driven design appears as a
“conceptually cohesive mechanism” and so can be partitioned into
a “separate lightweight framework”.

Quoting from Eric Evans’ book Domain-Driven Design [https://en.wikipedia.org/wiki/Domain-driven_design]:

“Partition a conceptually COHESIVE MECHANISM into a separate
lightweight framework. Particularly watch for formalisms for
well-documented categories of algorithms. Expose the capabilities of the
framework with an INTENTION-REVEALING INTERFACE. Now the other elements
of the domain can focus on expressing the problem (‘what’), delegating
the intricacies of the solution (‘how’) to the framework.”

This library

This is a library for event sourcing in Python. At its core, this library
supports storing and retrieving sequences of events, such as the domain events
of event-sourced aggregates in a domain-driven design, and snapshots of those
aggregates. A variety of schemas and technologies can be used for storing events,
and this library supports several of these possibilities.

To demonstrate how storing and retrieving domain events can be used effectively
as a persistence mechanism in an event-sourced application, this library includes
base classes and examples of event-sourced aggregates and event-sourced applications.

It is possible using this library to define an entire event-driven system of
event-sourced applications independently of infrastructure and mode of running.
That means system behaviours can be rapidly developed whilst running the entire
system synchronously in a single thread with a single in-memory database. And
then the system can be run asynchronously on a cluster with durable databases,
with the system effecting exactly the same behaviour.

Features

Flexible event store — flexible persistence of domain events. Combines
an event mapper and an event recorder in ways that can be easily extended.
Mapper uses a transcoder that can be easily extended to support custom
model object types. Recorders supporting different databases can be easily
substituted and configured with environment variables.

Domain models and applications — base classes for domain model aggregates
and applications. Suggests how to structure an event-sourced application.

Application-level encryption and compression — encrypts and decrypts events inside the
application. This means data will be encrypted in transit across a network (“on the wire”)
and at disk level including backups (“at rest”), which is a legal requirement in some
jurisdictions when dealing with personally identifiable information (PII) for example
the EU’s GDPR. Compression reduces the size of stored domain events and snapshots, usually
by around 25% to 50% of the original size. Compression reduces the size of data
in the database and decreases transit time across a network.

Snapshotting — reduces access-time for aggregates with many domain events.

Versioning - allows domain model changes to be introduced after an application
has been deployed. Both domain events and aggregate classes can be versioned.
The recorded state of an older version can be upcast to be compatible with a new
version. Stored events and snapshots are upcast from older versions
to new versions before the event or aggregate object is reconstructed.

Optimistic concurrency control — ensures a distributed or horizontally scaled
application doesn’t become inconsistent due to concurrent method execution. Leverages
optimistic concurrency controls in adapted database management systems.

Notifications and projections — reliable propagation of application
events with pull-based notifications allows the application state to be
projected accurately into replicas, indexes, view models, and other applications.
Supports materialized views and CQRS.

Event-driven systems — reliable event processing. Event-driven systems
can be defined independently of particular persistence infrastructure and mode of
running.

Detailed documentation — documentation provides general overview, introduction
of concepts, explanation of usage, and detailed descriptions of library classes.

Worked examples — includes examples showing how to develop aggregates, applications
and systems.

Design overview

The design of the library follows the notion of a “layered architecture” in
that there are distinct and separate layers for interfaces, application, domain,
and infrastructure. It also follows the “onion” or “hexagonal” or “clean”
architecture, in that the domain layer has no dependencies
on any other layer. The application layer depends on
the domain and infrastructure layers, and the interface
layer depends only on the application layer.

Register issues

This project is hosted on GitHub [https://github.com/johnbywater/eventsourcing].
Please register any issues, questions, and requests [https://github.com/johnbywater/eventsourcing/issues] you may have.

Installation guide

This version of the library is compatible with Python versions 3.7, 3.8,
3.9, and 3.10. The library’s suite of tests is run against these versions
and has 100% line and branch coverage.

You can use pip to install the library from the
Python Package Index [https://pypi.org/project/eventsourcing/].
It is recommended always to install into a virtual environment.

$ pip install eventsourcing

When including the library in a list of project dependencies, in order to
avoid installing future incompatible releases, it is recommended to specify
the major and minor version numbers.

As an example, the expression below would install the latest version of the
v9.1.x release, allowing future bug fixes released with point version number
increments.

eventsourcing<=9.1.99999

Specifying the major and minor version number in this way will avoid any
potentially destabilising additional features introduced with minor version
number increments, and also any backwards incompatible changes introduced
with major version number increments.

This package depends only on modules from the Python Standard Library,
except for the extra options described below.

Install options

Running the install command with different options will install
the extra dependencies associated with that option. If you installed
without any options, you can easily install optional dependencies
later by running the install command again with the options you want.

For example, if you want to store cryptographically encrypted events,
then install with the crypto option. This simply installs
PyCryptodome [https://pypi.org/project/pycryptodome/]
so feel free to make your project depend on that instead.

$ pip install "eventsourcing[crypto]"

If you want to store events with PostgreSQL, then install with
the postgres option. This simply installs
Psycopg2 [https://pypi.org/project/psycopg2/] so feel
free to make your project depend on that instead. Please note,
the binary version psycopg2-binary [https://pypi.org/project/psycopg2-binary/]
is a convenient alternative for development and testing, but the main
package is recommended by the Psycopg2 developers for production usage.

$ pip install "eventsourcing[postgres]"

Options can be combined, so that if you want to store encrypted events in PostgreSQL,
then install with the crypto and postgres options.

$ pip install "eventsourcing[crypto,postgres]"

Developers

If you want to install the code for the purpose of developing the library, then
fork and clone the GitHub repository and install from the root folder with the
‘dev’ option. This option will install a number of packages that help with
development and documentation, such as the above extra dependencies along with
Sphinx, Coverage.py, Black, mypy, Flake8, and isort.

$ pip install ".[dev]"

Alternatively, the project’s Makefile can be used to the same effect with
the following command.

$ make install

Once installed, you can check the unit tests pass and the code is 100% covered
by the tests with the following command.

$ make test

Before the tests will pass, you will need setup PostgreSQL. The following commands
will install PostgreSQL on MacOS and setup the database and database user. If you
already have PostgreSQL installed, just create the database and user. If you prefer
to run PostgreSQL in a Docker container, feel free to do that too.

$ brew install postgresql
$ brew services start postgresql
$ psql postgres
postgres=# CREATE DATABASE eventsourcing;
postgres=# CREATE USER eventsourcing WITH PASSWORD 'eventsourcing';

You can also check the syntax and static types are correct with the
following command (which uses isort, Black, Flake8, and mypy).

$ make lint

The code can be automatically reformatted using the following command
(which uses isort and Black). Flake8 and mypy errors will often need
to be fixed by hand.

$ make fmt

You can build the docs, and make sure they build, with the following command
(which uses Sphinx).

$ make docs

If you wish to submit changes to the library, before submitting a pull
request please check all three things (lint, docs, and test) which you
can do conveniently with the following command.

$ make prepush

If you wish to submit a pull request on GitHub, please target the main
branch. Improvements of any size are always welcome.

Support options

I’m very grateful for your interest in this library. It has taken quite a
lot of time to create this library. Similarly, it may take some time to
understand the library and develop well-designed event-sourced applications.

To supplement the detailed documentation, professional training workshops
and development services are available. Friendly community support is also
available on the Slack [https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY>`__.] channel.

Please support the continuing development and maintenance of this library
by starring the project on GitHub [https://github.com/johnbywater/eventsourcing]
and if possible by making a regular donation. If you have any issues using
the library or reading the documentation, please raise an issue on GitHub [https://github.com/johnbywater/eventsourcing/issues],
feel free to start a discussion in the Slack [https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY>`__.] channel, or create a pull request.

Professional support

Design and development services are available to help developers and managers
with the development and management of their event-sourced applications and systems.

	Development of working applications and systems for production use.

	Development of sample applications and systems for guidance or demonstration purposes.

	Overall assessment of your existing implementation, with recommendations for improvement.

	Address specific concerns with how your event-sourced application or system is built and run.

	Coaching developers in the use of the library.

Please contact John Bywater via the Slack [https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY>`__.] channel for more information about professional
support.

Training workshops

Training workshops are available to help developers more
quickly learn how to use the library. Workshop participants
will be guided through a series of topics, gradually discovering
what the library is capable of doing, and learning how to use
the library effectively.

Please contact John Bywater via the Slack [https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY>`__.] channel for more information about
training workshops.

Community support

The library has a growing community that may be able to help.

	You can ask questions on the Slack [https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTJjMmJjYTc3ODQ3M2YwOTMwMDJlODJkMjk3ZmE1MGYyZDM4MjIxODZmYmVkZmJkODRhZDg5N2MwZjk1YzU3NmY>`__.] channel.

	You can also register issues and requests on our
issue tracker [https://github.com/johnbywater/eventsourcing/issues].

Support the project

Please follow the Sponsor button [https://github.com/johnbywater/eventsourcing]
on the GitHub project for options.

domain — Domain models

This module helps with developing event-sourced domain models.

An event-sourced domain model has many event-sourced aggregates.
The state of an event-sourced aggregate is determined by a sequence of
domain events.
The time needed to reconstruct an aggregate from its domain events can
be reduced by using snapshots.

Aggregates in DDD

Aggregates are enduring objects which enjoy adventures of change. The
book Domain-Driven Design by Eric Evans’ describes a design pattern
called “aggregate” in the following way.

“An aggregate is a cluster of associated objects that we treat as a unit
for the purpose of data changes. Each aggregate has a root and a boundary…

Therefore…

Cluster the entities and value objects into aggregates and
define boundaries around each. Choose one entity to be the root of each
aggregate, and control all access to the objects inside the boundary
through the root. Allow external objects to hold references to the
root only.”

An aggregate is a cluster of ‘entities’ and ‘value objects’. An entity is an
object with a fixed unique identity and other attributes that may vary. A
value object does not vary, and does not necessarily have a unique identity.
This basic notion of a cluster of software objects is understandable as
straightforward object-oriented programming [https://en.wikipedia.org/wiki/Object-oriented_programming].

An aggregate has a ‘root’. The ‘root’ of an aggregate is an entity.
This entity is known as the ‘root entity’ or the ‘aggregate root’. Entities
have IDs and the ID of the root entity is used to uniquely identify the
cluster of objects in a domain model. Access to the cluster of objects
is made through the root entity.

Changes to the cluster of objects are made using ‘command methods’ defined on
the root entity, and the state of the cluster of objects is obtained by using
either ‘query methods’ or properties of the root entity. The idea of distinguishing
between command methods (methods that change state but do not return values) and
query methods (methods that return values but do not change state) is known as
‘command-query separation’ or CQS. CQS was devised by Bertrand Meyer [https://en.wikipedia.org/wiki/Command%E2%80%93query_separation] and
described in his book Object Oriented Software Construction.

The ‘boundary’ of the aggregate is defined by the extent of the cluster of objects.
The ‘consistency’ of the cluster of objects is maintaining by making sure all
the changes that result from a single command are recorded atomically [https://en.wikipedia.org/wiki/Atomicity_(database_systems)]. There is
only ever one cluster of objects for any given aggregate, so there is
no branching, and the atomic changes have a serial order. These two notions
of ‘consistency’ and ‘boundary’ are combined in the notion in Domain-Driven
Design of ‘consistency boundary’. Whilst we can recognise the cluster of objects as
basic object-orientated programming, and we can recognise the use of command and
query methods as the more refined pattern called CQS, the ‘consistency boundary’
notion gives to the aggregates in Domain-Driven Design their distinctive character.

Event-sourced aggregates

It is in the Zen of Python [https://www.python.org/dev/peps/pep-0020/] that
explicit is better than implicit. The changes to an aggregate’s
cluster of objects will always follow from decisions made by the aggregate, but these
decisions had not been directly expressed as objects. It will always be true that
a decision itself does not change, but this fact had not been directly expressed.

“Explicit is better than implicit.”

To make things explicit, the decisions made in the command methods of an
aggregate can be coded and recorded as a sequence of immutable ‘domain event’
objects, and this sequence can be used to evolve the aggregate’s cluster of
entities and value objects. Event-sourced aggregates make these things explicit.
For each event-sourced aggregate, there is a sequence of domain event objects,
and the state of an event-sourced aggregate is determined by its sequence of
domain event objects. The state of an aggregate can change, and its sequence
of domain events can be augmented. But once created the individual domain
event objects do not change. They are what they are. The notion of ‘change’
is the contrast between successive domain events in an aggregate’s sequence
(contrasted from the standpoint of the cluster of objects within an aggregate’s consistency
boundary, which is a standpoint that may change since there must be a function
that applies the events to the cluster, and this function can be adjusted.
Hence it isn’t strictly true to say that the state of an aggregate is determined
by a sequence of events. The events merely contribute determination, and the
state is in fact determined by a combination of the sequence of events and
a function that constructs that state from those events, but I digress…)

The state of an aggregate, event-sourced or not, is changed by calling its
command methods. In an event-sourced aggregate, the command methods create
new domain event objects. The domain events are used to evolve the state of
the aggregate. By evolving the state of the aggregate via creating and applying
domain events, the domain events can be recorded and used in future to reconstruct
the state of the aggregate.

One command may result in many new domain event objects, and a single client request may
result in the execution of many commands. To maintain consistency in the domain model,
all the domain events triggered by responding to a single client request must be recorded
atomically in the order they were created, otherwise the recorded state of the aggregate
may become inconsistent with respect to that which was desired or expected.

Aggregate base class

This library’s Aggregate class is a base class for event-sourced
aggregates. It can be imported from the library’s eventsourcing.domain module.

from eventsourcing.domain import Aggregate

The Aggregate base class can be used to develop
event-sourced aggregates. See for example the World aggregate in the
basic example below.
The Aggregate base class has three methods which can
be used by subclasses:

	the class method _create()
is used to create aggregate objects;

	the object method trigger_event()
is used to trigger subsequent events; and

	the object method collect_events()
is used to collect aggregate events that have been triggered.

These methods are explained below.

Creating new aggregates

Firstly, the Aggregate class has a “private” class
method _create() which can be used to create
a new aggregate. It works by creating the first of a new sequence of domain
event objects, and uses this domain event object to construct and initialise
an instance of the aggregate class. Usually, this “private” method will be called
by a “public” class method defined on a subclass of the Aggregate
base class. For example, see the class method create() of the World
aggregate class in the basic example below.

The _create() method has a required positional
argument event_class which is used by the caller to pass a domain event class that
will represent the fact that an aggregate was “created”. A domain event object of this
type will be constructed by this method, and this domain event object will be used to
construct and initialise an aggregate object. This method will then return that aggregate
object. The _create() method also has
a required id argument which should be a Python UUID
object that will be used to uniquely identify the aggregate in the domain
model.

from uuid import uuid4

aggregate_id = uuid4()

aggregate = Aggregate._create(Aggregate.Created, id=aggregate_id)

The library’s Aggregate base class is defined with
a nested class Created which
can be used to represent the fact that an aggregate was “created”. The
Created class is defined as a
frozen Python data class [https://docs.python.org/3/library/dataclasses.html]
with four attributes: the ID of an aggregate, a version number, a timestamp,
and the topic of an aggregate class — see
the Domain events
section below for more information. Except
for the ID which is passed as the id argument to the
_create() method,
the values of these other attributes are worked out by the
_create() method. The
Created class can
be used directly, but is normally subclassed to define a particular “created”
event class for a particular aggregate class, with a suitable name and
with suitable extra attributes that represent the particular beginning
of a particular type of aggregate. A “created” event class should be named using a past
participle that describes the beginning of something, such as “Started”,
“Opened”, or indeed “Created”.

The _create() method also accepts arbitrary
keyword-only arguments, which if given will also be used to construct the event object
in addition to those mentioned above. The “created” event object will be constructed with these
additional arguments, and so the extra method arguments must be matched by the attributes of the
“created” event class. (The concrete aggregate class’s initializer method __init__()
should also be coded to accept these extra arguments.)

Having been created, an aggregate object will have an aggregate ID. The ID is presented
by its id property. The ID will be identical to
the value passed with the id argument to the _create()
method.

assert aggregate.id == aggregate_id

A new aggregate instance has a version number. The version number is presented by its
version property, and is a Python int.
The initial version of a newly created aggregate is always 1.

assert aggregate.version == 1

A new aggregate instance has a created_on
property which gives the date and time when an aggregate object was created, and is determined
by the timestamp attribute of the first event in the aggregate’s sequence, which is the “created”
event. It is a Python datetime object.

from datetime import datetime

assert isinstance(aggregate.created_on, datetime)

A new aggregate instance also has a modified_on
property which gives the date and time when an aggregate object was last modified, and is determined
by the timestamp attribute of the last event in the aggregate’s sequence. It is also a Python
datetime object.

from datetime import datetime

assert isinstance(aggregate.modified_on, datetime)

Initially, since there is only one event in the aggregate’s sequence, the created_on
and modified_on values are identical, and equal to the timestamp of the “created” event.

assert aggregate.created_on == aggregate.modified_on

Triggering subsequent events

Secondly, the Aggregate class has a
method trigger_event() which can be called
to create subsequent aggregate event objects and apply them to the aggregate.
This method is usually called by the command methods of an aggregate to
express the decisions that it makes. For example,
see the make_it_so() method of the World class in the basic example below.

The trigger_event() method has a positional
argument event_class, which is used to pass the type of aggregate event to be
triggered.

from eventsourcing.domain import AggregateEvent

aggregate.trigger_event(AggregateEvent)

The Aggregate class has a nested
Event class. It is defined
as a frozen Python data class [https://docs.python.org/3/library/dataclasses.html]
with three attributes: the ID of an aggregate, a version number, and a timestamp.
It can be used as a base class to define aggregate event classes. The
Created event class discussed above is a
subclass of Event. For another example, see
the SomethingHappened class in the basic example
below. Aggregate event classes are usually named using past participles to describe
what was decided by the command method, such as “Done”, “Updated”, “Closed”, etc.
See the Domain events section below for more information about
aggregate event classes. They can be defined on aggregate classes as nested classes.

The trigger_event() method also accepts arbitrary
keyword-only arguments, which will be used to construct the aggregate event object. As with the
_create() method described above, the event object will be constructed
with these arguments, and so any extra arguments must be matched by the expected values of
the event class. For example what: str on the SomethingHappened event class in the
basic example below matches the what=what keyword
argument passed in the call to the trigger_event()
method in the make_it_so() command.

The version will be incremented by 1 for each event that is triggered.

assert aggregate.version == 2

After triggering a second event, the modified time will be greater than the created time.

assert aggregate.modified_on > aggregate.created_on

Collecting pending events

Thirdly, the Aggregate class has a “public” object method
collect_events()
which can be called to collect the aggregate events that have been created but
since either the last call to this method or since the aggregate object was
constructed. This method is called without any arguments.

from eventsourcing.domain import AggregateCreated

pending_events = aggregate.collect_events()

assert len(pending_events) == 2

assert isinstance(pending_events[0], AggregateCreated)
assert pending_events[0].originator_id == aggregate.id
assert pending_events[0].originator_version == 1
assert pending_events[0].timestamp == aggregate.created_on

assert isinstance(pending_events[1], AggregateEvent)
assert pending_events[1].originator_id == aggregate.id
assert pending_events[1].originator_version == 2
assert pending_events[1].timestamp == aggregate.modified_on

Basic example

In the example below, the World aggregate is a subclass of the library’s
base Aggregate class. The __init__() method
extends the super class method and initialises a history attribute with an
empty Python list object.

The create() method is a class method that creates and returns
a new World aggregate object. It calls the base class
_create() method. It
uses its Created event class as the value of the event_class
argument. It uses a
version 4 UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)]
object as the value of the id argument. (See the Namespaced IDs
section below for a discussion about using version 5 UUIDs.)

The make_it_so() method is a command method that triggers
a World.SomethingHappened domain event. It calls the base class
trigger_event() method.
The event is triggered with the method argument what.

from eventsourcing.domain import Aggregate

class World(Aggregate):
 def __init__(self):
 self.history = []

 @classmethod
 def create(cls):
 return cls._create(cls.Created, id=uuid4())

 class Created(AggregateCreated):
 pass

 def make_it_so(self, what):
 self.trigger_event(self.SomethingHappened, what=what)

 class SomethingHappened(AggregateEvent):
 what: str

 def apply(self, world):
 world.history.append(self.what)

The nested Created class is defined as a subclass of the base aggregate
Created class. Although in
this simple example this World.Created event class carries no more
attributes than the base class event that it inherits, it’s always worth
defining all event classes on the concrete aggregate class itself in case
these classes need to be modified so that old instances can be upcast to
new versions (see Versioning). The name of an event class
should express your project’s ubiquitous language, take the grammatical
form of a past participle (either regular or irregular), and describe the
type of decision represented by the event class.

The nested SomethingHappened class is a frozen data class that extends the
base aggregate event class Aggregate.Event (also a frozen data class) with a
field what which is defined as a Python str. An apply() method
is defined which appends the what value to the aggregate’s history. This
method is called when the event is triggered (see Domain events).

By defining the event class under the command method which triggers it, and then
defining an apply() method as part of the event class definition, the story of
calling a command method, triggering an event, and evolving the state of the aggregate
is expressed neatly in three parts.

Having defined the World aggregate class, we can create a new World
aggregate object by calling the World.create() class method.

world = World.create()

assert isinstance(world, World)

The aggregate’s attributes created_on and modified_on show
when the aggregate was created and when it was modified. Since there
has only been one domain event, these are initially equal. The values
of these attributes are timezone-aware Python datetime objects.
These values follow from the timestamp values of the domain event
objects, and represent when the aggregate’s first and last domain events
were created. The timestamps have no consequences for the operation of
the library, and are included to give a general indication to humans of
when the domain events occurred.

from datetime import datetime

assert world.created_on == world.modified_on
assert isinstance(world.created_on, datetime)

We can call the aggregate object methods. The World aggregate has a command
method make_it_so() which triggers the SomethingHappened event. The
apply() method of the SomethingHappened class appends the what
of the event to the history of the world. So when we call the make_it_so()
command, the argument what will be appended to the history.

Commands methods trigger events.
world.make_it_so("dinosaurs")
world.make_it_so("trucks")
world.make_it_so("internet")

State of aggregate object has changed.
assert world.history[0] == "dinosaurs"
assert world.history[1] == "trucks"
assert world.history[2] == "internet"

Now that more than one domain event has been created, the aggregate’s
modified_on value is greater than its created_on value.

assert world.modified_on > world.created_on

The resulting domain events are now held internally in the aggregate in
a list of pending events, in the pending_events attribute. The pending
events can be collected by calling the aggregate’s
collect_events() method. These events are
pending to be saved, and indeed the library’s application
object has a save() method which works by
calling this method. So far, we have created four domain events and we have
not yet collected them, and so there will be four pending events: one Created
event, and three SomethingHappened events.

Has four pending events.
assert len(world.pending_events) == 4

Collect pending events.
pending_events = world.collect_events()
assert len(pending_events) == 4
assert len(world.pending_events) == 0

assert isinstance(pending_events[0], World.Created)
assert isinstance(pending_events[1], World.SomethingHappened)
assert isinstance(pending_events[2], World.SomethingHappened)
assert isinstance(pending_events[3], World.SomethingHappened)
assert pending_events[1].what == "dinosaurs"
assert pending_events[2].what == "trucks"
assert pending_events[3].what == "internet"

assert pending_events[0].timestamp == world.created_on
assert pending_events[3].timestamp == world.modified_on

Domain events

Domain events are created but do not change. They are uniquely identifiable
in a domain model by a aggregate ID which identifies the sequence to which
they belong and and a version number which determines their position in
that sequence.

The library’s DomainEvent class is a base
class for domain events. It is defined as a frozen data class with an
originator_id attribute which is a Python UUID that holds
an aggregate ID and identifies the sequence to which a domain event object
belongs, an originator_version attribute which is a Python int
that holds the version of an aggregate and determines the position of a domain
event object in its sequence, and a timestamp attribute which is a Python
datetime that represents when the event was created.

The timestamps have no consequences for the operation of the library. The aggregate
events objects are ordered in their sequence by their version numbers, and not by
their timestamps. The timestamps exist only to give a general indication to
humans of when things occurred.

The library’s DomainEvent class is used (inherited)
by the aggregate Event class.
The library’s Snapshot class also inherits from
the DomainEvent class — see Snapshots
for more information about snapshots.
The aggregate Event class is defined as
a subclass of the domain event base class DomainEvent.
Aggregate event objects represent original decisions by a domain model
that advance the state of an application.

The aggregate Event class has a method
mutate() which adjusts the state
of an aggregate. It has an optional argument aggregate which is used to pass
the aggregate object to which the domain event object pertains into the
method when it is called. It returns an optional aggregate object, and
the return value can be passed in when calling this method on another event
object. An initial “created” event can construct an aggregate object, a
subsequent event can receive and return an aggregate, and a final “discarded”
event can receive an aggregate and return None. The
mutate() methods of a sequence
of aggregate events can be used to reconstruct a copy of the original aggregate
object. And indeed the application repository object has a
get() method which works by
calling these methods.

copy = None
for domain_event in pending_events:
 copy = domain_event.mutate(copy)

assert isinstance(copy, World)
assert copy.id == world.id
assert copy.version == world.version
assert copy.created_on == world.created_on
assert copy.modified_on == world.modified_on
assert copy.history == world.history

The aggregate Event class has a method
apply(). Like the
mutate() method, it also has
an argument aggregate which is used to pass the aggregate object
to which the domain event object pertains into the method when it is called.
The mutate() method calls the
event’s apply() method before it
returns. The base class apply()
method body is empty, and so this method can be simply overridden (implemented
without a call to the superclass method). It is also not expected to return a value
(any value that it does return will be ignored). Hence this method can be
simply and conveniently implemented in aggregate event classes to apply the
event attribute values to the aggregate.

The mutate() and
apply() methods of aggregate events
effectively implement the “aggregate projection”, which means the function by which
the events are processed to reconstruct the state of the aggregate. An alternative to
use apply() methods on the event classes
is to define apply methods on the aggregate class. A base Event
class can be defined on the aggregate class which simply calls an apply() method
on the aggregate class. This aggregate apply() method can be decorated with the
@singledispatchmethod decorator, and then event-specific methods can be defined
and registered that will apply the events to the aggregate. See the Cargo aggregate
of the Cargo Shipping example for details. A further alternative
is to use the declarative syntax.

The aggregate Created class represents
the creation of an aggregate object instance. It is defined as a frozen data class
that extends the base class Event with
its attribute originator_topic which is Python str. The value of this
attribute will be a topic that describes the path to the aggregate
instance’s class. It has a mutate()
method which constructs an aggregate object after resolving the originator_topic
value to an aggregate class. It does not call apply()
since the aggregate class __init__() method receives the “created” event attribute
values and can fully initialise the aggregate object.

Domain event objects are usually created by aggregate methods, as part of a sequence
that determines the state of an aggregate. The attribute values of new event objects are
decided by these methods before the event is created. For example, the aggregate’s
_create() method uses the given value of its id
argument as the new event’s originator_id. It sets the originator_version to the
value of 1. It derives the originator_topic value from the aggregate class. And
it calls Python’s datetime.now() to create the timestamp value.

Similarly, the aggregate trigger_event() method uses the
id attribute of the aggregate as the originator_id of the new domain event. It uses the current
aggregate version to create the next version number (by adding 1) and uses
this value as the originator_version of the new domain event. It calls
datetime.now() to create the timestamp value of the new domain event.

The timestamp values are “timezone aware” datetime objects. The default timezone is
UTC, as defined by Python’s datetime.timezone.utc. It is recommended to store
date-times as UTC values, and convert to a local timezone in the interface layer according
to the particular timezone of a particular user. However, if necessary, this default can
be changed either by assigning a datetime.tzinfo object to the TZINFO
attribute of the eventsourcing.domain module. The eventsourcing.domain.TZINFO
value can also be configured using environment variables, by setting the environment variable
TZINFO_TOPIC to a string that describes the topic of a Python
datetime.tzinfo object (for example 'datetime:timezone.utc').

Snapshots

Snapshots speed up aggregate access time, by avoiding the need to retrieve
and apply all the domain events when reconstructing an aggregate object instance.
The library’s Snapshot class can be used to create
and restore snapshots of aggregate object instances. See Snapshotting
in the application module documentation for more information about taking snapshots
in an event-sourced application.

The Snapshot class is defined as
a subclass of the domain event base class DomainEvent.
It is defined as a frozen data class and extends the base class with attributes
topic and state, which hold the topic of an aggregate object class and
the current state of an aggregate object.

from eventsourcing.domain import Snapshot

The class method take() can be used to
create a snapshot of an aggregate object.

snapshot = Snapshot.take(world)

assert isinstance(snapshot, Snapshot)
assert snapshot.originator_id == world.id
assert snapshot.originator_version == world.version
assert snapshot.topic == "__main__:World", snapshot.topic
assert snapshot.state["history"] == world.history
assert snapshot.state["_created_on"] == world.created_on
assert snapshot.state["_modified_on"] == world.modified_on
assert len(snapshot.state) == 3

A snapshot’s mutate() method can be used to reconstruct its
aggregate object instance.

copy = snapshot.mutate(None)

assert isinstance(copy, World)
assert copy.id == world.id
assert copy.version == world.version
assert copy.created_on == world.created_on
assert copy.modified_on == world.modified_on
assert copy.history == world.history

The signature of the mutate() method is the same as the
domain event object method of the same name, so that when reconstructing an aggregate, a list
that starts with a snapshot and continues with the subsequent domain event objects can be
treated in the same way as a list of all the domain event objects of an aggregate.
This similarity is needed by the application repository, since
some specialist event stores (e.g. AxonDB) return a snapshot as the first domain event.

Initial Version Number

By default, the aggregates have an initial version number of 1. Sometimes it may be
desired, or indeed necessary, to use a different initial version number.

In the example below, the initial version number of the class MyAggregate is defined to be 0.

class MyAggregate(Aggregate):
 INITIAL_VERSION = 0

aggregate = MyAggregate()
assert aggregate.version == 0

If all aggregates in a domain model need to use the same non-default version number,
then a base class can be defined and used by the aggregates of the domain model on
which INITIAL_VERSION is set to the preferred value. Some people may wish to set
the preferred value on the library Aggregate class.

Versioning

Versioning allows aggregate and domain event classes to be modified after an application has been deployed.

On both aggregate and domain event classes, the class attribute class_version can be used to indicate
the version of the class. This attribute is inferred to have a default value of 1. If the data model is
changed, by adding or removing or renaming or changing the meaning of values of attributes, subsequent
versions should be given a successively higher number than the previously deployed version. Static methods
of the form upcast_vX_vY() will be called to update the state of a stored event or snapshot from a lower
version X to the next higher version Y. Such upcast methods will be called to upcast the state from
the version of the class with which it was created to the version of the class which will be reconstructed.
For example, upcasting the stored state of an object created at version 2 of a class that will be used
to reconstruct an object at version 4 of the class will involve calling upcast methods
upcast_v2_v3(), and upcast_v3_v4(). If you aren’t using snapshots, you don’t need to define
upcast methods or version numbers on the aggregate class.

In the example below, version 1 of the class MyAggregate is defined with an attribute a.

class MyAggregate(Aggregate):
 def __init__(self, a:str):
 self.a = a

 @classmethod
 def create(cls, a:str):
 return cls._create(cls.Created, id=uuid4(), a=a)

 class Created(Aggregate.Created):
 a: str

After an application that uses the above aggregate class has been deployed, its Created events
will have been created and stored with the a attribute defined. If subsequently the attribute b
is added to the definition of the Created event, in order for the existing stored events to be
constructed in a way that satisfies the new version of the class, the stored events will need to be
upcast to have a value for b. In the example below, the static method upcast_v1_v2() defined
on the Created event sets a default value for b in the given state. The class attribute
class_version is set to 2. The same treatment is given to the aggregate class as the domain
event class, so that snapshots can be upcast.

class MyAggregate(Aggregate):
 def __init__(self, a:str, b:int):
 self.a = a
 self.b = b

 @classmethod
 def create(cls, a:str, b: int = 0):
 return cls._create(cls.Created, id=uuid4(), a=a, b=b)

 class Created(Aggregate.Created):
 a: str
 b: int

 class_version = 2

 @staticmethod
 def upcast_v1_v2(state):
 state["b"] = 0

 class_version = 2

 @staticmethod
 def upcast_v1_v2(state):
 state["b"] = 0

After an application that uses the above version 2 aggregate class has been deployed, its Created
events will have be created and stored with both the a and b attributes. If subsequently the
attribute c is added to the definition of the Created event, in order for the existing stored
events from version 1 to be constructed in a way that satisfies the new version of the class, they
will need to be upcast to include a value for b and c. The existing stored events from version 2
will need to be upcast to include a value for c. The additional static method upcast_v2_v3()
defined on the Created event sets a default value for c in the given state. The class attribute
class_version is set to 3. The same treatment is given to the aggregate class as the domain event
class, so that any snapshots will be upcast.

class MyAggregate(Aggregate):
 def __init__(self, a:str, b:int, c:float):
 self.a = a
 self.b = b
 self.c = c

 @classmethod
 def create(cls, a:str, b: int = 0, c: float = 0.0):
 return cls._create(cls.Created, id=uuid4(), a=a, b=b, c=c)

 class Created(Aggregate.Created):
 a: str
 b: int
 c: float

 class_version = 3

 @staticmethod
 def upcast_v1_v2(state):
 state["b"] = 0

 @staticmethod
 def upcast_v2_v3(state):
 state["c"] = 0.0

 class_version = 3

 @staticmethod
 def upcast_v1_v2(state):
 state["b"] = 0

 @staticmethod
 def upcast_v2_v3(state):
 state["c"] = 0.0

If subsequently a new event is added that manipulates a new attribute that is expected to be initialised
when the aggregate is created, in order that snapshots from earlier version will be upcast, the aggregate
class attribute class_version will need to be set to 4 and a static method upcast_v3_v4()
defined on the aggregate class which upcasts the state of a previously created snapshot. In the example
below, the new attribute d is initialised in the __init__() method, and a domain event which
updates d is defined. Since the Created event class has not changed, it remains at version 3.

class MyAggregate(Aggregate):
 def __init__(self, a:str, b:int, c:float):
 self.a = a
 self.b = b
 self.c = c
 self.d = False

 @classmethod
 def create(cls, a:str, b: int = 0, c: float = 0.0):
 return cls._create(cls.Created, id=uuid4(), a=a, b=b, c=c)

 class Created(Aggregate.Created):
 a: str
 b: int
 c: float

 class_version = 3

 @staticmethod
 def upcast_v1_v2(state):
 state["b"] = 0

 @staticmethod
 def upcast_v2_v3(state):
 state["c"] = 0.0

 def set_d(self, d: bool):
 self.trigger_event(self.DUpdated, d=d)

 class DUpdated(AggregateEvent):
 d: bool

 def apply(self, aggregate: "Aggregate") -> None:
 aggregate.d = self.d

 class_version = 4

 @staticmethod
 def upcast_v1_v2(state):
 state["b"] = 0

 @staticmethod
 def upcast_v2_v3(state):
 state["c"] = 0.0

 @staticmethod
 def upcast_v3_v4(state):
 state["d"] = False

If the value objects used by your events also change, you may also need to define new transcodings
with new names. Simply register the new transcodings after the old, and use a modified name value
for the transcoding. In this way, the existing encoded values will be decoded by the old transcoding,
and the new instances of the value object class will be encoded with the new version of the transcoding.

In order to support forward compatibility as well as backward compatibility, so that consumers designed for
old versions will not be broken by modifications, it is advisable to restrict changes to existing types to
be additions only, so that existing attributes are unchanged. If existing aspects need to be changed, for
example by renaming or removing an attribute of an event, then it is advisable to define a new type. This
approach depends on consumers overlooking or ignoring new attribute and new types, but they may effectively
be broken anyway by such changes if they no longer see any data.

Including model changes in the domain events may help to inform consumers of changes to the model schema,
and may allow the domain model itself to be validated, so that classes are marked with new versions if
the attributes have changed. This may be addressed by a future version of this library. Considering model
code changes as a sequence of immutable events brings the state of the domain model code itself into the same
form of event-oriented consideration as the consideration of the state an application as a sequence of events.

Namespaced IDs

Aggregates can be created with version 5 UUIDs [https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions_3_and_5_(namespace_name-based)]
so that their IDs can be generated from a given name in a namespace. They can
be used for example to create IDs for aggregates with fixed names that you want
to identify by name. For example, you can use this technique to identify a system
configuration object. This technique can also be used to identify index aggregates
that hold the IDs of aggregates with mutable names, or used to index other mutable
attributes of an event sourced aggregate. It isn’t possible to change the ID of an
existing aggregate, because the domain events will need to be stored together in a
single sequence. And so, using an index aggregate that has an ID that can be recreated
from a particular value of a mutable attribute of another aggregate to hold the
ID of that aggregate with makes it possible to identify that aggregate from that
particular value. Such index aggregates can be updated when the mutable
attribute changes, or not.

For example, if you have a collection of page aggregates with names that might change,
and you want to be able to identify the pages by name, then you can create index
aggregates with version 5 UUIDs that are generated from the names, and put the IDs
of the page aggregates in the index aggregates. The aggregate classes Page and Index
in the example code below show how this can be done.

If we imagine we can save these page and index aggregates and retrieve them by ID, we
can imagine retrieving a page aggregate using its name by firstly recreating an index ID
from the page name, retrieving the index aggregate using that ID, getting the page ID
from the index aggregate, and then using that ID to retrieve the page aggregate. When
the name is changed, a new index aggregate can be saved along with the page, so that
later the page aggregate can be retrieved using the new name. See the discussion about
saving multiple aggregates to see an example of
how this can work.

from uuid import NAMESPACE_URL, uuid5, UUID
from typing import Optional

from eventsourcing.domain import Aggregate

class Page(Aggregate):
 def __init__(self, name: str, body: str):
 self.name = name
 self.body = body

 @classmethod
 def create(cls, name: str, body: str = ""):
 return cls._create(
 id=uuid4(),
 event_class=cls.Created,
 name=name,
 body=body
)

 class Created(AggregateCreated):
 name: str
 body: str

 def update_name(self, name: str):
 self.trigger_event(self.NameUpdated, name=name)

 class NameUpdated(AggregateEvent):
 name: str

 def apply(self, page: "Page"):
 page.name = self.name

class Index(Aggregate):
 def __init__(self, name: str, ref: UUID):
 self.name = name
 self.ref = ref

 @classmethod
 def create(cls, name: str, ref: UUID):
 return cls._create(
 event_class=cls.Created,
 id=cls.create_id(page.name),
 name=page.name,
 ref=page.id
)

 @staticmethod
 def create_id(name: str):
 return uuid5(NAMESPACE_URL, f"/pages/{name}")

 class Created(AggregateCreated):
 name: str
 ref: UUID

 def update_ref(self, ref):
 self.trigger_event(self.RefUpdated, ref=ref)

 class RefUpdated(AggregateEvent):
 ref: Optional[UUID]

 def apply(self, index: "Index"):
 index.ref = self.ref

We can use the classes above to create a “page” aggregate with a name that
we will then change. We can at the same time create an index object for the
page.

page = Page.create(name="Erth")
index1 = Index.create(page.name, page.id)

Let’s imagine these two aggregate are saved together, and having
been saved can be retrieved by ID. See the discussion about
saving multiple aggregates
to see how this works in an application object.

We can use the page name to recreate the index ID, and use the index
ID to retrieve the index aggregate. We can then obtain the page ID from
the index aggregate, and then use the page ID to get the page aggregate.

index_id = Index.create_id("Erth")
assert index_id == index1.id
assert index1.ref == page.id

Now let’s imagine we want to correct the name of the page. We
can update the name of the page, and create another index aggregate
for the new name, so that later we can retrieve the page using
its new name.

page.update_name("Earth")
index2 = Index.create(page.name, page.id)

We can drop the reference from the old index, so that it can
be used to refer to a different page.

We can now use the new name to get the ID of the second index aggregate,
and imagine using the second index aggregate to get the ID of the page.

index_id = Index.create_id("Earth")
assert index_id == index2.id
assert index2.ref == page.id

Saving and retrieving aggregates by ID is demonstrated in the discussion
about saving multiple aggregates in
the applications documentation.

Declarative syntax

You may have noticed a certain amount of repetition in the definitions of the
aggregates above. In several places, the same argument was defined in a command
method, on an event class, and in an apply method. The library offers a more concise
way to express aggregates by using a declarative syntax.

Create new aggregate by calling the aggregate class directly

A new event sourced aggregate can be created by calling the aggregate class
directly. You don’t actually need to define a class method to do this, although
you may wish to express your project’s ubiquitous language by doing so.

Calling the aggregate class directly will firstly create a created event (an instance
of the aggregate’s created event class) and use that event object to construct an
instance of the aggregate class.

class MyAggregate(Aggregate):
 class Created(Aggregate.Created):
 pass

Call the class directly.
agg = MyAggregate()

There is one pending event.
pending_events = agg.collect_events()
assert len(pending_events) == 1
assert isinstance(pending_events[0], MyAggregate.Created)

The pending event can be used to reconstruct the aggregate.
copy = pending_events[0].mutate(None)
assert copy.id == agg.id
assert copy.created_on == agg.created_on

Using the init method to define the created event class

If a created event class is not defined on an aggregate class,
one will be automatically defined. The attributes of this event
class will be derived by inspecting the signature of the __init__() method.
The example below has an init method that has a name argument.
Because this example doesn’t have a created event class defined
explicitly on the aggregate class, a created event class will be
defined automatically to match the signature of the init method.
That is, a created event class will be defined that has an attribute
name.

class MyAggregate(Aggregate):
 def __init__(self, name):
 self.name = name

Call the class with a 'name' argument.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

There is one pending event.
pending_events = agg.collect_events()
assert len(pending_events) == 1

The pending event is a created event.
assert isinstance(pending_events[0], MyAggregate.Created)

The created event has a 'name' attribute.
pending_events[0].name == "foo"

The created event can be used to reconstruct the aggregate.
copy = pending_events[0].mutate(None)
assert copy.name == agg.name

Dataclass-style init methods

Python’s dataclass annotations can be used to define an aggregate’s
__init__() method. A created event class can be automatically
defined from this method.

from dataclasses import dataclass

@dataclass
class MyAggregate(Aggregate):
 name: str

Create a new aggregate.
agg = MyAggregate(name="foo")

The aggregate has a 'name' attribute
assert agg.name == "foo"

The created event has a 'name' attribute.
pending_events = agg.collect_events()
pending_events[0].name == "foo"

Optional arguments can be defined by providing default
values on the dataclass attribute definitions.

from dataclasses import dataclass

@dataclass
class MyAggregate(Aggregate):
 name: str = "bar"

Call the class without a name.
agg = MyAggregate()
assert agg.name == "bar"

Call the class with a name.
agg = MyAggregate("foo")
assert agg.name == "foo"

Anything that works on a dataclass should work here too. For example,
you can define non-init argument attributes by using the field
feature of the dataclasses module.

from dataclasses import field
from typing import List

@dataclass
class MyAggregate(Aggregate):
 history: List[str] = field(default_factory=list, init=False)

Create a new aggregate.
agg = MyAggregate()

The aggregate has a list.
assert agg.history == []

Please note, when using the dataclass-style for defining __init__()
methods, using the @dataclass decorator will inform your IDE of
the method signature. The annotations will in any case be used to create
an __init__() method when the class does not already have an __init__().
Using the dataclass decorator merely enables code completion and syntax
checking, but the code will run just the same with or without the
@dataclass decorator being applied to aggregate classes that
are defined using this style.

Declaring the created event class name

To give the created event class a particular name, use the class argument ‘created_event_name’.

class MyAggregate(Aggregate, created_event_name="Started"):
 name: str

Create a new aggregate.
agg = MyAggregate("foo")

The created event class is called "Started".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Started)

This is equivalent to declaring the created event class explicitly
on the aggregate class using a particular name.

class MyAggregate(Aggregate):
 class Started(Aggregate.Created):
 pass

Create a new aggregate.
agg = MyAggregate()

The created event class is called "Started".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Started)

If more than one created event class is defined on the aggregate class, perhaps
because the name of the created event class was changed and there are stored events
that were created using the old created event class that still need to be supported,
the created_event_name class argument can be used to identify which created event
class is the one to use when creating new aggregate instances. This can be combined
with upcasting old events, discussed above.

class MyAggregate(Aggregate, created_event_name="Started"):
 class Created(Aggregate.Created):
 pass

 class Started(Aggregate.Created):
 pass

Create a new aggregate.
agg = MyAggregate()

The created event class is called "Started".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Started)

If the created_event_name argument is used but the value does not match
the name of one the created event classes that are explicitly defined on the
aggregate class, then an event class will be automatically defined, and it
will be used when creating new aggregate instances.

class MyAggregate(Aggregate, created_event_name="Opened"):
 class Created(Aggregate.Created):
 pass

 class Started(Aggregate.Created):
 pass

Create a new aggregate.
agg = MyAggregate()

The created event class is called "Opened".
pending_events = agg.collect_events()
assert isinstance(pending_events[0], MyAggregate.Opened)

Defining the aggregate ID

By default, the aggregate ID will be a version 4 UUID, automatically
generated when a new aggregate is created. However, the aggregate ID
can also be defined as a function of the arguments used to create the
aggregate. You can do this by defining a create_id() method.

class MyAggregate(Aggregate):
 name: str

 @staticmethod
 def create_id(name: str):
 return uuid5(NAMESPACE_URL, f"/my_aggregates/{name}")

Create a new aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

The aggregate ID is a version 5 UUID.
assert agg.id == MyAggregate.create_id("foo")

If a create_id() method is defined on the aggregate class, the base class
method create_id()
will be overridden. The arguments used in this method must be a subset of the
arguments used to create the aggregate. The base class method simply returns a
version 4 UUID, which is the default behaviour for generating aggregate IDs.

Alternatively, an ‘id’ attribute can be declared on the aggregate
class, and an ID supplied directly when creating new aggregates.

def create_id(name: str):
 return uuid5(NAMESPACE_URL, f"/my_aggregates/{name}")

class MyAggregate(Aggregate):
 id: UUID

Create an ID.
agg_id = create_id(name="foo")

Create an aggregate with the ID.
agg = MyAggregate(id=agg_id)
assert agg.id == agg_id

When defining an explicit __init__() method, the id argument can
be set on the object as self._id. Assigning to self.id won’t work
because id is defined as a read-only property on the base aggregate class.

class MyAggregate(Aggregate):
 def __init__(self, id: UUID):
 self._id = id

Create an aggregate with the ID.
agg = MyAggregate(id=agg_id)
assert agg.id == agg_id

The @event decorator

A more concise way of expressing the concerns around defining, triggering and
applying subsequent aggregate events can be achieved by using the library function
event() to decorate aggregate command methods.

When decorating a method with the @event decorator, the method signature
will be used to automatically define an aggregate event class. And when the
method is called, the event will firstly be triggered with the values given
when calling the method, so that an event is created and used to mutate the
state of the aggregate. The body of the decorated method will be used as the
apply() method of the event both after the event has been triggered and
when the aggregate is reconstructed from stored events. The name of the event
class can be passed to the decorator.

from eventsourcing.domain import event

class MyAggregate(Aggregate):
 name: str

 @event("NameUpdated")
 def update_name(self, name):
 self.name = name

Create an aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

Update the name.
agg.update_name("bar")
assert agg.name == "bar"

There are two pending events.
pending_events = agg.collect_events()
assert len(pending_events) == 2
assert pending_events[0].name == "foo"

The second pending event is a 'NameUpdated' event.
assert isinstance(pending_events[1], MyAggregate.NameUpdated)

The second pending event has a 'name' attribute.
assert pending_events[1].name == "bar"

Inferring the event class name from the method name

The @event decorator can be used without providing
the name of an event. If the decorator is used without any
arguments, the name of the event will be derived from the
method name. The method name is assumed to be lower case
and underscore-separated. The name of the event class is
constructed by firstly splitting the name of the method by its
underscore characters, then by capitalising the resulting parts,
and then by concatenating the capitalised parts to give an
“upper camel case” class name. For example, a method name
name_updated would give an event class name NameUpdated.

from eventsourcing.domain import event

class MyAggregate(Aggregate):
 name: str

 @event
 def name_updated(self, name):
 self.name = name

Create an aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

Update the name.
agg.name_updated("bar")
assert agg.name == "bar"

There are two pending events.
pending_events = agg.collect_events()
assert len(pending_events) == 2
assert pending_events[0].name == "foo"

The second pending event is a 'NameUpdated' event.
assert isinstance(pending_events[1], MyAggregate.NameUpdated)

The second pending event has a 'name' attribute.
assert pending_events[1].name == "bar"

However, this creates a slight tension in the naming conventions
because methods should normally be named using the imperative form
and event names should normally be past participles. However, this
can be useful when naming methods that will be only called by aggregate
command methods under certain conditions.

For example, if an attempt is made to update the value of an attribute,
but the given value happens to be identical to the existing value, then
it might be desirable to skip on having an event triggered.

class MyAggregate(Aggregate):
 name: str

 def update_name(self, name):
 if name != self.name:
 self.name_updated(name)

 @event
 def name_updated(self, name):
 self.name = name

Create an aggregate.
agg = MyAggregate(name="foo")
assert agg.name == "foo"

Update the name lots of times.
agg.update_name("foo")
agg.update_name("foo")
agg.update_name("foo")
agg.update_name("bar")
agg.update_name("bar")
agg.update_name("bar")
agg.update_name("bar")

There are two pending events (not eight).
pending_events = agg.collect_events()
assert len(pending_events) == 2, len(pending_events)

The World aggregate class revisited

Using the declarative syntax described above, the World aggregate in
the basic example above can be
expressed more concisely in the following way.

In the example below, the World aggregate’s created event is automatically
defined by inspecting the aggregate’s __init__() method. The created event
is named Created. The World.SomethingHappened event is automatically
defined by inspecting the decorated make_it_so() method. The event class
name “SomethingHappened” is given to the event decorator. The body of the decorated
make_it_so() method will be used as the apply() method of the
World.SomethingHappened event, both when the event is triggered and
when the aggregate is reconstructed from stored events.

from eventsourcing.domain import event

class World(Aggregate):
 def __init__(self):
 self.history = []

 @event("SomethingHappened")
 def make_it_so(self, what):
 self.history.append(what)

The World aggregate class can be called directly. Calling the
class directly will call the Aggregate
_create() method with the
automatically defined World.Created event. Calling the make_it_so()
method will trigger a World.SomethingHappened event, and this event
will be used to mutate the state of the aggregate, such that the
make_it_so() method argument what will eventually be appended
to the aggregate’s history attribute.

world = World()
world.make_it_so("dinosaurs")
world.make_it_so("trucks")
world.make_it_so("internet")

assert world.history[0] == "dinosaurs"
assert world.history[1] == "trucks"
assert world.history[2] == "internet"
assert len(world.collect_events()) == 4

The Page and Index aggregates revisited

The Page and Index aggregates defined in the above
discussion about namespaced IDs can be expressed more
concisely in the following way.

from dataclasses import dataclass

@dataclass
class Page(Aggregate):
 name: str
 body: str = ""

 @event("NameUpdated")
 def update_name(self, name: str):
 self.name = name

@dataclass
class Index(Aggregate):
 name: str
 ref: Optional[UUID]

 @staticmethod
 def create_id(name: str):
 return uuid5(NAMESPACE_URL, f"/pages/{name}")

 @event("RefUpdated")
 def update_ref(self, ref: Optional[UUID]):
 self.ref = ref

Create new page and index aggregates.
page = Page(name="Erth")
index1 = Index(name=page.name, ref=page.id)

The page name can be used to recreate
the index ID. The index ID can be used
to retrieve the index aggregate, which
gives the page ID, and then the page ID
can be used to retrive the page aggregate.
index_id = Index.create_id(name="Erth")
assert index_id == index1.id
assert index1.ref == page.id
assert index1.name == page.name

Later, the page name can be updated,
and a new index created for the page.
page.update_name(name="Earth")
index1.update_ref(ref=None)
index2 = Index(name=page.name, ref=page.id)

The new page name can be used to recreate
the new index ID. The new index ID can be
used to retrieve the new index aggregate,
which gives the page ID, and then the page
ID can be used to retrieve the renamed page.
index_id = Index.create_id(name="Earth")
assert index_id == index2.id
assert index2.ref == page.id
assert index2.name == page.name

Non-trivial command methods

Tn the examples above, the work of the command methods is “trivial”, in
that the command method arguments are always used directly as the aggregate event
attribute values. But often a command method needs to do some work before
triggering an event. The event attributes may not be the same as the command
method arguments. The logic of the command may be such that under some conditions
an event should not be triggered.

As a final example, consider the following Order class. It is an ordinary
Python object class. Its __init__() method takes a name argument. The
method confirm() sets the attribute confirmed_at. The method
pickup() checks that the order has been confirmed before calling
the _pickup() method which sets the attribute pickedup_at.
If the order has not been confirmed, an exception will be raised. That is,
whilst the confirm() command method is trivial in that its arguments
are always used as the event attributes, the pickup() method is non-trivial
in that it will only trigger an event if the order has been confirmed. That
means we can’t decorate the pickup() method with the @event decorator
without triggering an unwanted event.

class Order:
 def __init__(self, name):
 self.name = name
 self.confirmed_at = None
 self.pickedup_at = None

 def confirm(self, at):
 self.confirmed_at = at

 def pickup(self, at):
 if self.confirmed_at:
 self._pickup(at)
 else:
 raise RuntimeError("Order is not confirmed")

 def _pickup(self, at):
 self.pickedup_at = at

This ordinary Python class can used in the usual way. We can construct
a new instance of the class, and call its command methods.

Start a new order, confirm, and pick up.
order = Order("my order")

try:
 order.pickup(datetime.now())
except RuntimeError:
 pass
else:
 raise AssertionError("shouldn't get here")

order.confirm(datetime.now())
order.pickup(datetime.now())

This ordinary Python class can be easily converted into an event sourced aggregate
by applying the library’s @event decorator to the
confirm() and _pickup() methods.

Because the command methods are decorated in this way, when the confirm()
method is called, an Order.Confirmed event will be triggered. When the
_pickup() method is called, an Order.PickedUp event will be triggered.
Those event classes are defined automatically from the method signatures. The
decorating of the _pickup() method and not of the pickup() method is
a good example of a command method that needs to do some work before an event
is triggered. The body of the pickup() method is only executed when the
command method is called, whereas the body of the _pickup() method is
executed each time the event is applied to evolve the state of the aggregate.

class Order(Aggregate):
 def __init__(self, name):
 self.name = name
 self.confirmed_at = None
 self.pickedup_at = None

 @event("Confirmed")
 def confirm(self, at):
 self.confirmed_at = at

 def pickup(self, at):
 if self.confirmed_at:
 self._pickup(at)
 else:
 raise RuntimeError("Order is not confirmed")

 @event("PickedUp")
 def _pickup(self, at):
 self.pickedup_at = at

We can use the event sourced Order aggregate in the same way as the undecorated
ordinary Python Order class. The event sourced version has the advantage
that using it will trigger a sequence of aggregate events that can be persisted in
a database and used in future to determine the state of the order.

order = Order("my order")
order.confirm(datetime.now())
order.pickup(datetime.now())

Check the state of the order.
assert order.name == "my order"
assert isinstance(order.confirmed_at, datetime)
assert isinstance(order.pickedup_at, datetime)
assert order.pickedup_at > order.confirmed_at

Check the triggered events determine the state of the order.
pending_events = order.collect_events()
copy = None
for e in pending_events:
 copy = e.mutate(copy)
assert copy.name == order.name
assert copy.created_on == order.created_on
assert copy.modified_on == order.modified_on
assert copy.confirmed_at == order.confirmed_at
assert copy.pickedup_at == order.pickedup_at

Raising exceptions in the body of decorated methods

It is actually possible to decorate the pickup() command method
with the @event decorator, but if a decorated command method
has conditional logic that would mean the state of the aggregate
should not be evolved, you must take care to raise an exception
rather than returning early, and raise an exception before changing
the state of the aggregate at all. By raising an exception in the body
of a decorated method, the triggered event will not in fact be appended
to the aggregate’s list of pending events, and it will be as if it never
happened. However, the conditional expression will be perhaps needlessly
evaluated each time the aggregate is reconstructed from stored events. Of
course this conditional logic may be useful and considered as validation
of the projection of earlier events, for example checking the the Confirmed
event is working properly.

If you wish to use this style, just make sure to raise an exception rather
than returning early, and make sure not to change the state of the aggregate
if an exception may be raised later. Returning early will mean the event
will be appended to the list of pending events. Changing the state before
raising an exception will the state will be different when the aggregate
is reconstructed from stored events. So if your method does change state
and then raise an exception, make sure to obtain a fresh version of the
aggregate before continuing to trigger events.

class Order(Aggregate):
 def __init__(self, name):
 self.name = name
 self.confirmed_at = None
 self.pickedup_at = None

 @event("Confirmed")
 def confirm(self, at):
 self.confirmed_at = at

 @event("PickedUp")
 def pickup(self, at):
 if self.confirmed_at:
 self.pickedup_at = at
 else:
 raise RuntimeError("Order is not confirmed")

 # Creating the aggregate causes one pending event.
 order = Order("name")
 assert len(order.pending_events) == 1

 # Call pickup() too early raises an exception.
 try:
 order.pickup(datetime.now())
 except RuntimeError:
 pass
 else:
 raise Exception("Shouldn't get here")

 # There is still only one pending event.
 assert len(order.pending_events) == 1

Recording command arguments and reprocessing them each time the aggregate is
reconstructed is perhaps best described as “command sourcing”.

In many cases, a command will do some work and trigger
an aggregate event that has attributes that are different from the command,
and in those cases it is necessary to have two different methods with different
signatures: a command method that is not decorated and a decorated method that
triggers and applies an aggregate event. This second method may arguably be
well named by using a past participle rather than the imperative form.

The @aggregate decorator

Just for fun, the library’s aggregate() function can be
used to declare event sourced aggregate classes. This is equivalent to inheriting
from the library’s Aggregate class. The created
event name can be defined using the created_event_name argument of the decorator.
However, it is recommended to inherit from the Aggregate
class rather than using the @aggregate decorator so that full the
Aggregate class definition will be visible to your IDE.

from eventsourcing.domain import aggregate

@aggregate(created_event_name="Started")
class Order:
 def __init__(self, name):
 self.name = name

order = Order("my order")
pending_events = order.collect_events()
assert isinstance(pending_events[0], Order.Started)

Topics

A “topic” in this library is a string formed from joining with a colon character
(':') the path to a Python module (e.g. 'eventsourcing.domain') with the qualified
name of an object in that module (e.g. 'Aggregate.Created'). For example
'eventsourcing.domain:Aggregate.Created' describes the path to the library’s
Created class. The library’s
utils module contains the functions resolve_topic()
and get_topic() which are used in the library to resolve
a given topic to a Python object, and to construct a topic for a given Python object.

Classes

	
class eventsourcing.domain.MetaDomainEvent(*args, **kwargs)[source]

	Bases: abc.ABCMeta

	
static __new__(mcs, name: str, bases: tuple, cls_dict: dict) → eventsourcing.domain.MetaDomainEvent[source]

	Create and return a new object. See help(type) for accurate signature.

	
__init__(*args, **kwargs) → None[source]

	Initialize self. See help(type(self)) for accurate signature.

	
class eventsourcing.domain.DomainEvent(originator_id: uuid.UUID, originator_version: int, timestamp: datetime.datetime)[source]

	Bases: abc.ABC

Base class for domain events, such as aggregate AggregateEvent
and aggregate Snapshot.

Constructor arguments:

	Parameters

	
	originator_id (UUID) – ID of originating aggregate.

	originator_version (int) – version of originating aggregate.

	timestamp (datetime) – date-time of the event

	
class eventsourcing.domain.AggregateEvent(originator_id: uuid.UUID, originator_version: int, timestamp: datetime.datetime)[source]

	Bases: eventsourcing.domain.DomainEvent, typing.Generic

Base class for aggregate events. Subclasses will model
decisions made by the domain model aggregates.

Constructor arguments:

	Parameters

	
	originator_id (UUID) – ID of originating aggregate.

	originator_version (int) – version of originating aggregate.

	timestamp (datetime) – date-time of the event

	
mutate(obj: Optional[TAggregate]) → Optional[TAggregate][source]

	Changes the state of the aggregate
according to domain event attributes.

	
apply(aggregate: TAggregate) → None[source]

	Applies the domain event to the aggregate.

	
class eventsourcing.domain.AggregateCreated(originator_id: uuid.UUID, originator_version: int, timestamp: datetime.datetime, originator_topic: str)[source]

	Bases: eventsourcing.domain.AggregateEvent

Domain event for when aggregate is created.

Constructor arguments:

	Parameters

	
	originator_id (UUID) – ID of originating aggregate.

	originator_version (int) – version of originating aggregate.

	timestamp (datetime) – date-time of the event

	originator_topic (str) – topic for the aggregate class

	
mutate(obj: Optional[TAggregate]) → TAggregate[source]

	Constructs aggregate instance defined
by domain event object attributes.

	
eventsourcing.domain.event(arg: Union[function, str, Type[eventsourcing.domain.AggregateEvent], None] = None) → eventsourcing.domain.CommandMethodDecorator[source]

	Can be used to decorate an aggregate method so that when the
method is called an event is triggered. The body of the method
will be used to apply the event to the aggregate, both when the
event is triggered and when the aggregate is reconstructed from
stored events.

class MyAggregate(Aggregate):
 @event("NameChanged")
 def set_name(self, name: str):
 self.name = name

…is equivalent to…

class MyAggregate(Aggregate):
 def set_name(self, name: str):
 self.trigger_event(self.NameChanged, name=name)

 class NameChanged(Aggregate.Event):
 name: str

 def apply(self, aggregate):
 aggregate.name = self.name

In the example above, the event “NameChanged” is defined automatically
by inspecting the signature of the set_name() method. If it is
preferred to declare the event class explicitly, for example to define
upcasting of old events, the event class itself can be mentioned in the
event decorator rather than just providing the name of the event as a
string.

class MyAggregate(Aggregate):

 class NameChanged(Aggregate.Event):
 name: str

 @event(NameChanged)
 def set_name(self, name: str):
 aggregate.name = self.name

	
eventsourcing.domain.triggers(arg: Union[function, str, Type[eventsourcing.domain.AggregateEvent], None] = None) → eventsourcing.domain.CommandMethodDecorator

	Can be used to decorate an aggregate method so that when the
method is called an event is triggered. The body of the method
will be used to apply the event to the aggregate, both when the
event is triggered and when the aggregate is reconstructed from
stored events.

class MyAggregate(Aggregate):
 @event("NameChanged")
 def set_name(self, name: str):
 self.name = name

…is equivalent to…

class MyAggregate(Aggregate):
 def set_name(self, name: str):
 self.trigger_event(self.NameChanged, name=name)

 class NameChanged(Aggregate.Event):
 name: str

 def apply(self, aggregate):
 aggregate.name = self.name

In the example above, the event “NameChanged” is defined automatically
by inspecting the signature of the set_name() method. If it is
preferred to declare the event class explicitly, for example to define
upcasting of old events, the event class itself can be mentioned in the
event decorator rather than just providing the name of the event as a
string.

class MyAggregate(Aggregate):

 class NameChanged(Aggregate.Event):
 name: str

 @event(NameChanged)
 def set_name(self, name: str):
 aggregate.name = self.name

	
class eventsourcing.domain.UnboundCommandMethodDecorator(event_decorator: eventsourcing.domain.CommandMethodDecorator)[source]

	Bases: object

Wraps an EventDecorator instance when attribute is accessed
on an aggregate class.

	
__init__(event_decorator: eventsourcing.domain.CommandMethodDecorator)[source]

	
	Parameters

	event_decorator (CommandMethodDecorator) –

	
class eventsourcing.domain.BoundCommandMethodDecorator(event_decorator: eventsourcing.domain.CommandMethodDecorator, aggregate: TAggregate)[source]

	Bases: object

Wraps an EventDecorator instance when attribute is accessed
on an aggregate so that the aggregate methods can be accessed.

	
__init__(event_decorator: eventsourcing.domain.CommandMethodDecorator, aggregate: TAggregate)[source]

	
	Parameters

	
	event_decorator (CommandMethodDecorator) –

	aggregate (Aggregate) –

	
__call__(*args, **kwargs) → None[source]

	Call self as a function.

	
class eventsourcing.domain.DecoratedEvent(*args, **kwds)[source]

	Bases: eventsourcing.domain.AggregateEvent

	
apply(aggregate: TAggregate) → None[source]

	Applies event to aggregate by calling
method decorated by @event.

	
class eventsourcing.domain.MetaAggregate(*args, created_event_name: Optional[str] = None)[source]

	Bases: abc.ABCMeta

	
static __new__(mcs, *args, **kwargs) → eventsourcing.domain.MetaAggregate[source]

	Create and return a new object. See help(type) for accurate signature.

	
__init__(*args, created_event_name: Optional[str] = None) → None[source]

	Initialize self. See help(type(self)) for accurate signature.

	
__call__(*args, **kwargs) → TAggregate[source]

	Call self as a function.

	
static create_id(**kwargs) → uuid.UUID[source]

	Returns a new aggregate ID.

	
_create(event_class: Type[TAggregateCreated], *, id: Optional[uuid.UUID] = None, **kwargs) → TAggregate[source]

	Factory method to construct a new
aggregate object instance.

	
class eventsourcing.domain.Aggregate[source]

	Bases: abc.ABC

Base class for aggregate roots.

	
class Event(*args, **kwds)[source]

	Bases: eventsourcing.domain.AggregateEvent

	
class Created(*args, **kwds)[source]

	Bases: eventsourcing.domain.AggregateCreated

	
static __new__(cls, *args, **kwargs) → Any[source]

	Create and return a new object. See help(type) for accurate signature.

	
__eq__(other: Any) → bool[source]

	Return self==value.

	
__repr__() → str[source]

	Return repr(self).

	
__base_init__(id: uuid.UUID, version: int, timestamp: datetime.datetime) → None[source]

	Initialises an aggregate object with an id, a version
number, and a timestamp. The internal pending_events list
is also initialised.

	
id

	The ID of the aggregate.

	
version

	The version number of the aggregate.

	
created_on

	The date and time when the aggregate was created.

	
modified_on

	The date and time when the aggregate was last modified.

	
pending_events

	A list of pending events.

	
trigger_event(event_class: Type[TAggregateEvent], **kwargs) → None[source]

	Triggers domain event of given type, by creating
an event object and using it to mutate the aggregate.

	
collect_events() → List[eventsourcing.domain.AggregateEvent][source]

	Collects and returns a list of pending aggregate
AggregateEvent objects.

	
eventsourcing.domain.aggregate(cls: Optional[eventsourcing.domain.MetaAggregate] = None, *, created_event_name: Optional[str] = None) → Union[eventsourcing.domain.MetaAggregate, Callable][source]

	Converts the class that was passed in to inherit from Aggregate.

@aggregate
class MyAggregate:
 pass

…is equivalent to…

class MyAggregate(Aggregate):
 pass

	
exception eventsourcing.domain.VersionError[source]

	Bases: Exception

Raised when a domain event can’t be applied to
an aggregate due to version mismatch indicating
the domain event is not the next in the aggregate’s
sequence of events.

	
class eventsourcing.domain.Snapshot(originator_id: uuid.UUID, originator_version: int, timestamp: datetime.datetime, topic: str, state: dict)[source]

	Bases: eventsourcing.domain.DomainEvent

Snapshots represent the state of an aggregate at a particular
version.

Constructor arguments:

	Parameters

	
	originator_id (UUID) – ID of originating aggregate.

	originator_version (int) – version of originating aggregate.

	timestamp (datetime) – date-time of the event

	topic (str) – string that includes a class and its module

	state (dict) – version of originating aggregate.

	
classmethod take(aggregate: TAggregate) → eventsourcing.domain.Snapshot[source]

	Creates a snapshot of the given Aggregate object.

	
mutate(_: None = None) → TAggregate[source]

	Reconstructs the snapshotted Aggregate object.

	
eventsourcing.utils.get_topic(cls: type) → str[source]

	Returns a string that locates the given class.

	
eventsourcing.utils.resolve_topic(topic: str) → Any[source]

	Returns an object located by the given string.

	
eventsourcing.utils.retry(exc: Union[Type[Exception], Sequence[Type[Exception]]] = <class 'Exception'>, max_attempts: int = 1, wait: float = 0, stall: float = 0, verbose: bool = False) → Callable[source]

	Retry decorator.

	Parameters

	
	exc – List of exceptions that will cause the call to be retried if raised.

	max_attempts – Maximum number of attempts to try.

	wait – Amount of time to wait before retrying after an exception.

	stall – Amount of time to wait before the first attempt.

	verbose – If True, prints a message to STDOUT when retries occur.

	Returns

	Returns the value returned by decorated function.

	
eventsourcing.utils.strtobool(val: str) → bool[source]

	Convert a string representation of truth to True or False.

True values are ‘y’, ‘yes’, ‘t’, ‘true’, ‘on’, and ‘1’; false values
are ‘n’, ‘no’, ‘f’, ‘false’, ‘off’, and ‘0’. Raises ValueError if
‘val’ is anything else.

	
eventsourcing.utils.random() → x in the interval [0, 1).

	

application — Applications

This module helps with developing event-sourced applications.

An event-sourced application object has command and query
methods used by clients to interact with its domain model.
An application object has an event-sourced repository used to obtain already
existing event-sourced aggregates. It also has a notification log
that is used to propagate the state of the application as a sequence
of domain event notifications.

Domain-driven design

The book Domain-Driven Design describes a “layered architecture” with four layers:
interface, application, domain, and infrastructure. The application layer depends on
the domain and infrastructure layers. The interface layer depends on the application
layer.

Generally speaking, the application layer implements commands which change the
state of the application, and queries which present the state of the application.
The commands and queries (“application services”) are called from the interface layer.
By keeping the application and domain logic in the application and domain layers,
different interfaces can be developed for different technologies without duplicating
application and domain logic.

The discussion below continues these ideas, by combining event-sourced aggregates
and persistence objects in an application object that implements “application services”
as object methods.

Application objects

An event-sourced application object combines a domain model with
a cohesive mechanism for storing and retrieving domain events.

The library’s Application object class
brings together objects from the domain and
persistence modules. It can be subclassed
to develop event-sourced applications. The general idea is to name
your application object class after the domain supported by its domain model,
and then define command and query methods that allow interfaces to create, read,
update and delete your domain model aggregates. Domain model aggregates are discussed
in the domain module documentation. The “ubiquitous language”
of your project should guide the names of the application’s command and query methods,
along with those of its domain model aggregates.

The Application class defines an object method
save() which can be
used to update the recorded state of one or many
domain model aggregates. The
save() method functions by using
the aggregate’s collect_events() method to collect
pending domain events; the pending domain events are stored by calling the
put() method of application’s
event store.

The Application class defines an
object attribute repository which holds an event-sourced repository.
The repository’s get() method can be used by
your application’s command and query methods to obtain already existing aggregates.

The Application class defines an
object attribute log which holds a local notification log.
The notification log can be used to propagate the state of an application as a sequence of
domain event notifications.

The Application class defines an object method
take_snapshot() which can
be used for snapshotting existing aggregates. Snapshotting
isn’t necessary, but can help to reduce the time it takes to access aggregates with
lots of domain events.

Basic example

In the example below, the Worlds application extends the library’s
application object base class. The World aggregate is defined and discussed
as the basic example in the domain module documentation.

The Worlds application’s create_world() method is a command method that creates
and saves new World aggregates, returning a new world_id that can be
used to identify the aggregate on subsequence method calls. It saves the new
aggregate by calling the base class save() method.

The Worlds application’s make_it_so() method is a command method that obtains an
existing World aggregate from the repository, then calls the aggregate’s
command method make_it_so(), and then saves the aggregate by calling the
application’s save() method.

The Worlds application’s get_world_history() method is a query method that
presents the current history of an existing aggregate.

from typing import List
from uuid import UUID

from eventsourcing.application import Application

class Worlds(Application):
 def create_world(self) -> UUID:
 world = World.create()
 self.save(world)
 return world.id

 def make_it_so(self, world_id: UUID, what: str):
 world = self.repository.get(world_id)
 world.make_it_so(what)
 self.save(world)

 def get_world_history(self, world_id: UUID) -> List[str]:
 world = self.repository.get(world_id)
 return list(world.history)

In the example below, an instance of the Worlds application is constructed.
A new World aggregate is created by calling the create_world() method.
Three items are added to its history: “dinosaurs”, “trucks”, and “internet” by
calling the make_it_so() application command with the world_id aggregate
ID. The history of the aggregate is obtained when the get_world_history()
method is called.

application = Worlds()

world_id = application.create_world()

application.make_it_so(world_id, "dinosaurs")
application.make_it_so(world_id, "trucks")
application.make_it_so(world_id, "internet")

history = application.get_world_history(world_id)
assert history[0] == "dinosaurs"
assert history[1] == "trucks"
assert history[2] == "internet"

By default, the application object uses the “Plain Old Python Object” infrastructure
which has stored domain events in memory only. To store the domain events in a real
database, you will need to configure persistence.

Repository

A repository is used to get the already existing aggregates of the application’s domain model.

The application object’s repository attribute has an instance of the
library’s Repository class.

The repository’s get() method is used to
obtain already existing aggregates. It uses the event store’s
get() method to retrieve
the already existing domain event objects of the requested
aggregate, and the mutate()
methods of the domain event objects to reconstruct the state
of the requested aggregate. The repository’s
get() method accepts two
arguments: aggregate_id and version:

The aggregate_id argument is required, and should be the ID of an already existing
aggregate. If the aggregate is not found, the exception
AggregateNotFound will be raised.

The version argument is optional, and represents the required version of the aggregate.
If the requested version is greater than the highest available version of the aggregate, the
highest available version of the aggregate will be returned.

world_latest = application.repository.get(world_id)

assert world_latest.version == 4
assert len(world_latest.history) == 3

world_v1 = application.repository.get(world_id, version=1)

assert world_v1.version == 1
assert len(world_v1.history) == 0

world_v2 = application.repository.get(world_id, version=2)

assert world_v2.version == 2
assert len(world_v2.history) == 1
assert world_v2.history[-1] == "dinosaurs"

world_v3 = application.repository.get(world_id, version=3)

assert world_v3.version == 3
assert len(world_v3.history) == 2
assert world_v3.history[-1] == "trucks"

world_v4 = application.repository.get(world_id, version=4)

assert world_v4.version == 4
assert len(world_v4.history) == 3
assert world_v4.history[-1] == "internet"

world_v5 = application.repository.get(world_id, version=5)

assert world_v5.version == 4 # There is no version 5.
assert len(world_v5.history) == 3
assert world_v5.history[-1] == "internet"

Notification log

A notification log can be used to propagate the state of an application as a
sequence of domain event notifications.

The application object’s log attribute has an instance of the library’s
LocalNotificationLog class. The notification
log presents linked sections of
notification objects.
The sections are instances of the library’s Section class.

Each event notification has an id that has the unique integer ID of
the event notification. The event notifications are ordered by their IDs,
with later event notifications having higher values than earlier ones.

A notification log section is identified by a section ID string that comprises
two integers separated by a comma, for example "1,10". The first integer
specifies the notification ID of the first event notification included in the
section. The second integer specifies the notification ID of the second event
notification included in the section. Sections are requested from the notification
using the Python square bracket syntax, for example application.log["1,10"].

The notification log will return a section that has no more than the requested
number of event notifications. Sometimes there will be less event notifications
in the recorded sequence of event notifications than are needed to fill the
section, in which case less than the number of event notifications will be included
in the returned section. On the other hand, there may be gaps in the recorded
sequence of event notifications, in which case the last event notification
included in the section may have a notification ID that is greater than that
which was specified in the requested section ID.

A notification log section has an attribute section_id that has the section
ID. The section ID value will represent the event notification ID of the first
and the last event notification included in the section. If there are no event
notifications, the section ID will be None.

A notification log section has an attribute items that has the list of
notification objects included in the section.

A notification log section has an attribute next_id that has the section ID
of the next section in the notification log. If the notification log section has
less event notifications that were requested, the next_id value will be None.

In the example above, there are four domain events in the domain model, and so there
are four notifications in the notification log.

from eventsourcing.persistence import Notification

section = application.log["1,10"]

assert len(section.items) == 4
assert section.id == "1,4"
assert section.next_id is None

assert isinstance(section.items[0], Notification)
assert section.items[0].id == 1
assert section.items[1].id == 2
assert section.items[2].id == 3
assert section.items[3].id == 4

assert section.items[0].originator_id == world_id
assert section.items[1].originator_id == world_id
assert section.items[2].originator_id == world_id
assert section.items[3].originator_id == world_id

assert section.items[0].originator_version == 1
assert section.items[1].originator_version == 2
assert section.items[2].originator_version == 3
assert section.items[3].originator_version == 4

assert "World.Created" in section.items[0].topic
assert "World.SomethingHappened" in section.items[1].topic
assert "World.SomethingHappened" in section.items[2].topic
assert "World.SomethingHappened" in section.items[3].topic

assert b"dinosaurs" in section.items[1].state
assert b"trucks" in section.items[2].state
assert b"internet" in section.items[3].state

A domain event can be reconstructed from an event notification by calling the
application’s mapper method to_domain_event().
If the application is configured to encrypt stored events, the event notification
will also be encrypted, but the mapper will decrypt the event notification.

domain_event = application.mapper.to_domain_event(section.items[0])
assert isinstance(domain_event, World.Created)
assert domain_event.originator_id == world_id

domain_event = application.mapper.to_domain_event(section.items[3])
assert isinstance(domain_event, World.SomethingHappened)
assert domain_event.originator_id == world_id
assert domain_event.what == "internet"

Snapshotting

If the reconstruction of an aggregate depends on obtaining and replaying
a relatively large number of domain event objects, it can take a relatively
long time to reconstruct the aggregate. Snapshotting aggregates can help to
reduce access time of aggregates with lots of domain events.

Snapshots are stored separately from the aggregate events. When snapshotting
is enabled, the application object will have a snapshot store assigned to the
attribute ‘snapshots’. By default, snapshotting is not enabled, and the ‘snapshots’
attribute has the value None.

assert application.snapshots is None

Enabling snapshotting

To enable snapshotting in application objects, the environment variable
IS_SNAPSHOTTING_ENABLED may be set to a valid “true” value. The
function strtobool() module is used to interpret
the value of this environment variable, so that strings
"y", "yes", "t", "true", "on" and "1" are considered to
be “true” values, and "n", "no", "f", "false", "off" and "0"
are considered to be “false” values, and other values are considered to be invalid.
The default is for an application’s snapshotting functionality to be not enabled.

Application environment variables can be passed into the application using the
env argument when constructing an application object. Snapshotting can be
enabled (or disabled) for an individual application object in this way.

application = Worlds(env={"IS_SNAPSHOTTING_ENABLED": "y"})
assert application.snapshots is not None

Application environment variables can be also be set in the operating system environment.
Setting operating system environment variables will affect all applications created in
that environment.

import os

os.environ["IS_SNAPSHOTTING_ENABLED"] = "y"

application = Worlds()

assert application.snapshots is not None

del os.environ["IS_SNAPSHOTTING_ENABLED"]

Values passed into the application object will override operating system environment variables.

os.environ["IS_SNAPSHOTTING_ENABLED"] = "y"
application = Worlds(env={"IS_SNAPSHOTTING_ENABLED": "n"})

assert application.snapshots is None

del os.environ["IS_SNAPSHOTTING_ENABLED"]

Snapshotting can also be enabled for all instances of an application class by
setting the boolean attribute ‘is_snapshotting_enabled’ on the application class.

class WorldsWithSnapshottingEnabled(Worlds):
 is_snapshotting_enabled = True

application = WorldsWithSnapshottingEnabled()
assert application.snapshots is not None

However, this setting will also be overridden by both the construct arg env
and by the operating system environment. The example below demonstrates this
by extending the Worlds application class defined above.

application = WorldsWithSnapshottingEnabled(env={"IS_SNAPSHOTTING_ENABLED": "n"})
assert application.snapshots is None

os.environ["IS_SNAPSHOTTING_ENABLED"] = "n"
application = WorldsWithSnapshottingEnabled()
assert application.snapshots is None
del os.environ["IS_SNAPSHOTTING_ENABLED"]

Taking snapshots

The application method take_snapshot()
can be used to create a snapshot of the state of an aggregate. The ID of an aggregate
to be snapshotted must be passed when calling this method. By passing in the ID
(and optional version number), rather than an actual aggregate object, the risk of
snapshotting a somehow “corrupted” aggregate object that does not represent the
actually recorded state of the aggregate is avoided.

application = Worlds(env={"IS_SNAPSHOTTING_ENABLED": "y"})
world_id = application.create_world()

application.make_it_so(world_id, "dinosaurs")
application.make_it_so(world_id, "trucks")
application.make_it_so(world_id, "internet")

application.take_snapshot(world_id)

Snapshots are stored separately from the aggregate events, but snapshot objects are
implemented as a kind of domain event, and snapshotting uses the same mechanism
for storing snapshots as for storing aggregate events. When snapshotting is enabled,
the application object attribute snapshots is an event store dedicated to storing
snapshots. The snapshots can be retrieved from the snapshot store using the
get() method. We can get the latest snapshot
by selecting in descending order with a limit of 1.

snapshots = application.snapshots.get(world_id, desc=True, limit=1)

snapshots = list(snapshots)
assert len(snapshots) == 1, len(snapshots)
snapshot = snapshots[0]

assert snapshot.originator_id == world_id
assert snapshot.originator_version == 4

When snapshotting is enabled, the application repository looks for snapshots in this way.
If a snapshot is found by the aggregate repository when retrieving an aggregate,
then only the snapshot and subsequent aggregate events will be retrieved and used
to reconstruct the state of the aggregate.

Automatic snapshotting

Automatic snapshotting of aggregates at regular intervals can be enabled
by setting the application class attribute ‘snapshotting_intervals’. The
‘snapshotting_intervals’ should be a mapping of aggregate classes to integers
which represent the snapshotting interval. When aggregates are saved, snapshots
will be taken if the version of aggregate coincides with the specified interval.
The example below demonstrates this by extending the Worlds application class
with World aggregates snapshotted every 2 events.

class WorldsWithAutomaticSnapshotting(Worlds):
 snapshotting_intervals = {World: 2}

application = WorldsWithAutomaticSnapshotting()

world_id = application.create_world()

application.make_it_so(world_id, "dinosaurs")
application.make_it_so(world_id, "trucks")
application.make_it_so(world_id, "internet")

snapshots = application.snapshots.get(world_id)
snapshots = list(snapshots)

assert len(snapshots) == 2

assert snapshots[0].originator_id == world_id
assert snapshots[0].originator_version == 2

assert snapshots[1].originator_id == world_id
assert snapshots[1].originator_version == 4

In practice, a suitable interval would most likely be larger than 2.
And ‘snapshotting_intervals’ would be defined on your application
class and not a subclass.

Configuring persistence

The example above uses the application’s default persistence infrastructure.
By default, the application object uses the library’s “plain old Python objects”
infrastructure factory, which provides the application
with infrastructure classes that simply keep stored events in a data structure
in memory.

To use alternative persistence infrastructure, you will need to
set the environment variable INFRASTRUCTURE_FACTORY to the
topic of another infrastructure factory object
class that will construct alternative application persistence objects.
Using alternative persistence infrastructure will normally involve
setting particular environment variables that configure access to
a real database, such as a database name, a user name, and a password.

The example below shows how to configure the application to use the library’s
SQLite infrastructure. In the case of the library’s SQLite factory,
the environment variable SQLITE_DBNAME must be set to a file path. And if the
tables already exist, the CREATE_TABLE may be set to a “false” value ("n",
"no", "f", "false", "off", or "0"). The function
strtobool() is used to interpret the value of
this environment variable.

from tempfile import NamedTemporaryFile

tmpfile = NamedTemporaryFile(suffix="_eventsourcing_test.db")
tmpfile.name

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.sqlite:Factory"
os.environ["SQLITE_DBNAME"] = tmpfile.name
application = Worlds()

world_id = application.create_world()

application.make_it_so(world_id, "dinosaurs")
application.make_it_so(world_id, "trucks")
application.make_it_so(world_id, "internet")

By using a file on disk, the named temporary file tmpfile above,
the state of the application will endure after the application has
been reconstructed. The database table only needs to be created once,
and so when creating an application for an already existing database
the environment variable CREATE_TABLE may be set to a “false”
value ("n", "no", "f", "false", "off", "0").

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.sqlite:Factory"

application = Worlds()

history = application.get_world_history(world_id)
assert history[0] == "dinosaurs"
assert history[1] == "trucks"
assert history[2] == "internet"

Registering custom transcodings

The application’s persistence mechanism serialises the domain events,
using the library’s transcoder. If your aggregates’ domain event objects
have objects of types that are not already supported by the transcoder,
for example custom value objects, custom transcodings
for these objects will need to be implemented and registered with the application’s
transcoder.

The application method register_transcodings()
can be extended to register custom transcodings for custom
value objects used in your application’s domain events.
The library’s application base class registers transcodings
for UUID, Decimal, and
datetime objects.

For example, to define and register a Transcoding
for the Python date class, define a class such as the
DateAsISO class below, and extend the application
register_transcodings()
method by calling the super() method with the given transcoder
argument, and then the transcoder’s register()
method once for each of your custom transcodings.

from datetime import date
from typing import Union

from eventsourcing.persistence import Transcoder, Transcoding

class MyApplication(Application):
 def register_transcodings(self, transcoder: Transcoder):
 super().register_transcodings(transcoder)
 transcoder.register(DateAsISO)

class DateAsISO(Transcoding):
 type = date
 name = "date_iso"

 def encode(self, o: date) -> str:
 return o.isoformat()

 def decode(self, d: Union[str, dict]) -> date:
 assert isinstance(d, str)
 return date.fromisoformat(d)

Encryption and compression

Application-level encryption is useful for encrypting the state
of the application “on the wire” and “at rest”. Compression is
useful for reducing transport time of domain events and domain
event notifications across a network and for reducing the total
size of recorded application state.

The library’s AESCipher class can
be used to encrypt stored domain events. The Python zlib module
can be used to compress stored domain events. It is encapsulated
by the library’s ZlibCompressor
class.

To enable encryption and compression, set the
environment variables CIPHER_TOPIC (a topic
to a cipher class), CIPHER_KEY (a valid encryption key),
and COMPRESSOR_TOPIC (topic for a compressor
class).

When using the library’s AESCipher class,
you can use its static method create_key()
to generate a valid encryption key.

import os

from eventsourcing.cipher import AESCipher

Generate a cipher key (keep this safe).
cipher_key = AESCipher.create_key(num_bytes=32)

Configure cipher key.
os.environ["CIPHER_KEY"] = cipher_key

Configure cipher topic.
os.environ["CIPHER_TOPIC"] = "eventsourcing.cipher:AESCipher"

Configure compressor topic.
os.environ["COMPRESSOR_TOPIC"] = "eventsourcing.compressor:ZlibCompressor"

Saving multiple aggregates

In many cases, it is both possible and very useful to save more than
one aggregate in the same atomic transaction. The example below continues
the example from the discussion of namespaced IDs
in the previous section. The aggregate classes Page and Index are
defined in that section.

We can define a simple wiki application, which creates named
pages. Pages can be retrieved by name. Names can be changed
and the pages can be retrieved by the new name.

class Wiki(Application):
 def create_page(self, name: str, body: str) -> None:
 page = Page.create(name, body)
 index = Index.create(page)
 self.save(page, index)

 def rename_page(self, name: str, new_name: str) -> None:
 page = self.get_page(name)
 page.update_name(new_name)
 index = Index.create(page)
 self.save(page, index)
 return page.body

 def get_page(self, name: str) -> Page:
 index_id = Index.create_id(name)
 index = self.repository.get(index_id)
 page_id = index.ref
 return self.repository.get(page_id)

Now let’s construct the application object and create a new page (with a deliberate spelling mistake).

wiki = Wiki()

wiki.create_page(name="Erth", body="Lorem ipsum...")

We can use the page name to retrieve the body of the page.

assert wiki.get_page(name="Erth").body == "Lorem ipsum..."

We can also update the name of the page, and then retrieve the page using the new name.

wiki.rename_page(name="Erth", new_name="Earth")

assert wiki.get_page(name="Earth").body == "Lorem ipsum..."

The uniqueness constraint on the recording of stored domain event objects combined
with the atomicity of recording domain events means that name collisions in the
index will result in the wiki not being updated.

from eventsourcing.persistence import RecordConflictError

Can't create another page using an existing name.
try:
 wiki.create_page(name="Earth", body="Neque porro quisquam...")
except RecordConflictError:
 pass
else:
 raise AssertionError("RecordConflictError not raised")

assert wiki.get_page(name="Earth").body == "Lorem ipsum..."

Can't rename another page to an existing name.
wiki.create_page(name="Mars", body="Neque porro quisquam...")
try:
 wiki.rename_page(name="Mars", new_name="Earth")
except RecordConflictError:
 pass
else:
 raise AssertionError("RecordConflictError not raised")

assert wiki.get_page(name="Earth").body == "Lorem ipsum..."
assert wiki.get_page(name="Mars").body == "Neque porro quisquam..."

A more refined implementation might release old index objects
when page names are changed so that they can be reused by other
pages, or update the old index to point to the new index, so that
redirects can be implemented.

Classes

	
class eventsourcing.application.Repository(event_store: eventsourcing.persistence.EventStore[eventsourcing.domain.AggregateEvent][eventsourcing.domain.AggregateEvent], snapshot_store: Optional[eventsourcing.persistence.EventStore[eventsourcing.domain.Snapshot][eventsourcing.domain.Snapshot]] = None)[source]

	Bases: typing.Generic

Reconstructs aggregates from events in an
EventStore,
possibly using snapshot store to avoid replaying
all events.

	
__init__(event_store: eventsourcing.persistence.EventStore[eventsourcing.domain.AggregateEvent][eventsourcing.domain.AggregateEvent], snapshot_store: Optional[eventsourcing.persistence.EventStore[eventsourcing.domain.Snapshot][eventsourcing.domain.Snapshot]] = None)[source]

	Initialises repository with given event store (an
EventStore for aggregate
AggregateEvent objects)
and optionally a snapshot store (an
EventStore for aggregate
Snapshot objects).

	
get(aggregate_id: uuid.UUID, version: Optional[int] = None) → TAggregate[source]

	Returns an Aggregate
for given ID, optionally at the given version.

	
class eventsourcing.application.Section(id: Optional[str], items: List[eventsourcing.persistence.Notification], next_id: Optional[str])[source]

	Bases: object

Frozen dataclass that represents a section from a NotificationLog.
The items attribute contains a list of
Notification objects.
The id attribute is the section ID, two integers
separated by a comma that described the first and last
notification ID that are included in the section.
The next_id attribute describes the section ID
of the next section, and will be set if the section contains
as many notifications are were requested.

Constructor arguments:

	Parameters

	
	id (Optional[str]) – section ID of this section e.g. “1,10”

	items (List[Notification]) – a list of event notifications

	next_id (Optional[str]) – section ID of the following section

	
class eventsourcing.application.NotificationLog[source]

	Bases: abc.ABC

Abstract base class for notification logs.

	
__getitem__(section_id: str) → eventsourcing.application.Section[source]

	Returns a Section from a notification log.

	
select(start: int, limit: int) → List[eventsourcing.persistence.Notification][source]

	Returns a list of Notification objects.

	
class eventsourcing.application.LocalNotificationLog(recorder: eventsourcing.persistence.ApplicationRecorder, section_size: int = 10)[source]

	Bases: eventsourcing.application.NotificationLog

Notification log that presents sections of event notifications
retrieved from an ApplicationRecorder.

	
__init__(recorder: eventsourcing.persistence.ApplicationRecorder, section_size: int = 10)[source]

	Initialises a local notification object with given
ApplicationRecorder
and an optional section size.

Constructor arguments:

	Parameters

	
	recorder (ApplicationRecorder) – application recorder from which event
notifications will be selected

	section_size (int) – number of notifications to include in a section

	
__getitem__(requested_section_id: str) → eventsourcing.application.Section[source]

	Returns a Section of event notifications
based on the requested section ID. The section ID of
the returned section will describe the event
notifications that are actually contained in
the returned section, and may vary from the
requested section ID if there are less notifications
in the recorder than were requested, or if there
are gaps in the sequence of recorded event notification.

	
select(start: int, limit: int) → List[eventsourcing.persistence.Notification][source]

	Returns a list of Notification objects.

	
class eventsourcing.application.Application(env: Optional[Mapping[KT, VT_co]] = None)[source]

	Bases: abc.ABC, typing.Generic

Base class for event-sourced applications.

	
__init__(env: Optional[Mapping[KT, VT_co]] = None) → None[source]

	Initialises an application with an
InfrastructureFactory,
a Mapper,
an ApplicationRecorder,
an EventStore,
a Repository, and
a LocalNotificationLog.

	
construct_env(env: Optional[Mapping[KT, VT_co]] = None) → Mapping[KT, VT_co][source]

	Constructs environment from which application will be configured.

	
construct_factory() → eventsourcing.persistence.InfrastructureFactory[source]

	Constructs an InfrastructureFactory
for use by the application.

	
construct_mapper(application_name: str = '') → eventsourcing.persistence.Mapper[source]

	Constructs a Mapper
for use by the application.

	
construct_transcoder() → eventsourcing.persistence.Transcoder[source]

	Constructs a Transcoder
for use by the application.

	
register_transcodings(transcoder: eventsourcing.persistence.Transcoder) → None[source]

	Registers Transcoding
objects on given JSONTranscoder.

	
construct_recorder() → eventsourcing.persistence.ApplicationRecorder[source]

	Constructs an ApplicationRecorder
for use by the application.

	
construct_event_store() → eventsourcing.persistence.EventStore[eventsourcing.domain.AggregateEvent][eventsourcing.domain.AggregateEvent][source]

	Constructs an EventStore
for use by the application to store and retrieve aggregate
AggregateEvent objects.

	
construct_snapshot_store() → Optional[eventsourcing.persistence.EventStore[eventsourcing.domain.Snapshot][eventsourcing.domain.Snapshot]][source]

	Constructs an EventStore
for use by the application to store and retrieve aggregate
Snapshot objects.

	
construct_repository() → eventsourcing.application.Repository[~TAggregate][TAggregate][source]

	Constructs a Repository for use by the application.

	
construct_notification_log() → eventsourcing.application.LocalNotificationLog[source]

	Constructs a LocalNotificationLog for use by the application.

	
save(*aggregates, **kwargs) → None[source]

	Collects pending events from given aggregates and
puts them in the application’s event store.

	
notify(new_events: List[eventsourcing.domain.AggregateEvent]) → None[source]

	Called after new domain events have been saved. This
method on this class class doesn’t actually do anything,
but this method may be implemented by subclasses that
need to take action when new domain events have been saved.

	
take_snapshot(aggregate_id: uuid.UUID, version: Optional[int] = None) → None[source]

	Takes a snapshot of the recorded state of the aggregate,
and puts the snapshot in the snapshot store.

	
exception eventsourcing.application.AggregateNotFound[source]

	Bases: Exception

Raised when an Aggregate
object is not found in a Repository.

	
class eventsourcing.cipher.AESCipher(cipher_key: str)[source]

	Bases: eventsourcing.persistence.Cipher

Cipher strategy that uses AES cipher in GCM mode.

	
static create_key(num_bytes: int) → str[source]

	Creates AES cipher key, with length num_bytes.

	Parameters

	num_bytes – An int value, either 16, 24, or 32.

	
__init__(cipher_key: str)[source]

	Initialises AES cipher with cipher_key.

	Parameters

	cipher_key (str) – 16, 24, or 32 bytes encoded as base64

	
encrypt(plaintext: bytes) → bytes[source]

	Return ciphertext for given plaintext.

	
decrypt(ciphertext: bytes) → bytes[source]

	Return plaintext for given ciphertext.

	
class eventsourcing.compressor.ZlibCompressor[source]

	Bases: eventsourcing.persistence.Compressor

	
compress(data: bytes) → bytes[source]

	Compress bytes using zlib.

	
decompress(data: bytes) → bytes[source]

	Decompress bytes using zlib.

persistence — Infrastructure

This module provides a cohesive mechanism for storing domain events.

The entire mechanism is encapsulated by the library’s
event store object class. An event store stores and retrieves
domain events. The event store uses a mapper to convert
domain events to stored events, and it uses a recorder
to insert stored events in a datastore.

A mapper converts domain event objects of various types to
stored event objects when domain events are stored in the event
store. It also converts stored events objects back to domain
event objects when domain events are retrieved from the event
store. A mapper uses an extensible transcoder that can be set up
with additional transcoding objects that serialise and deserialise
particular types of object, such as Python’s UUID,
datetime and Decimal objects.
A mapper may use a compressor to compress and decompress the state
of stored event objects, and may use a cipher to encode and decode
the state of stored event objects. If both a compressor and a cipher
are being used by a mapper, the state of any stored event objects will
be compressed and then encoded when storing domain events, and will be
decoded and then decompressed when retrieving domain events.

A recorder inserts stored event objects in a datastore when domain
events are stored in an event store, and selects stored events from
a datastore when domain events are retrieved from an event store.
Depending on the type of the recorder it may be possible to select
the stored events as event notifications, and it may be possible
atomically to record tracking records along with the stored events,

Transcoder

A transcoder is used by a mapper to serialise and deserialise
the state of domain model event objects.

The library’s JSONTranscoder class
can be constructed without any arguments.

from eventsourcing.persistence import JSONTranscoder

transcoder = JSONTranscoder()

The transcoder object has methods encode()
and decode() which are used to perform the
serialisation and deserialisation. The serialised state is a Python bytes object.

data = transcoder.encode({"a": 1})
copy = transcoder.decode(data)
assert copy == {"a": 1}

The library’s JSONTranscoder uses the Python
json module. And so, by default, only the basic object types supported by that
module can be encoded and decoded. The transcoder can be extended by registering
transcodings for the other types of object used in your domain model’s event objects.
A transcoding will convert other types of object to a representation of the non-basic
type of object that uses the basic types that are supported. The transcoder method
register() is used to register
individual transcodings with the transcoder.

Transcodings

In order to encode and decode non-basic types of object that are not supported by
the transcoder by default, custom transcodings need to be defined in code and
registered with the transcoder using the transcoder object’s
register() method. A transcoding
will encode an instance of a non-basic type of object that cannot by default be
encoded by the transcoder into a basic type of object that can be encoded by the
transcoder, and will decode that representation into the original type of object.
This makes it possible to transcode custom value objects, including custom types
that contain custom types. The transcoder works recursively through the object
and so included custom types do not need to be encoded by the transcoder, but
will be converted subsequently.

The library includes a limited collection of custom transcoding objects. For
example, the library’s UUIDAsHex class
transcodes a Python UUID objects as a hexadecimal string.

from uuid import uuid4

from eventsourcing.persistence import UUIDAsHex

transcoding = UUIDAsHex()

id1 = uuid4()
data = transcoding.encode(id1)
copy = transcoding.decode(data)
assert copy == id1

The library’s DatetimeAsISO class
transcodes Python datetime objects as ISO strings.

from datetime import datetime

from eventsourcing.persistence import (
 DatetimeAsISO,
)

transcoding = DatetimeAsISO()

datetime1 = datetime(2021, 12, 31, 23, 59, 59)
data = transcoding.encode(datetime1)
copy = transcoding.decode(data)
assert copy == datetime1

The library’s DecimalAsStr class
transcodes Python Decimal objects as decimal strings.

from decimal import Decimal

from eventsourcing.persistence import (
 DecimalAsStr,
)

transcoding = DecimalAsStr()

decimal1 = Decimal("1.2345")
data = transcoding.encode(decimal1)
copy = transcoding.decode(data)
assert copy == decimal1

Transcodings are registered with the transcoder using the transcoder object’s
register() method.

transcoder.register(UUIDAsHex())
transcoder.register(DatetimeAsISO())
transcoder.register(DecimalAsStr())

data = transcoder.encode(id1)
copy = transcoder.decode(data)
assert copy == id1

data = transcoder.encode(datetime1)
copy = transcoder.decode(data)
assert copy == datetime1

data = transcoder.encode(decimal1)
copy = transcoder.decode(data)
assert copy == decimal1

Attempting to serialize an unsupported type will result in a Python TypeError.

from datetime import date

date1 = date(2021, 12, 31)
try:
 data = transcoder.encode(date1)
except TypeError as e:
 assert e.args[0] == (
 "Object of type <class 'datetime.date'> is not serializable. "
 "Please define and register a custom transcoding for this type."
)
else:
 raise AssertionError("TypeError not raised")

Attempting to deserialize an unsupported type will also result in a Python TypeError.

try:
 JSONTranscoder().decode(data)
except TypeError as e:
 assert e.args[0] == (
 "Data serialized with name 'decimal_str' is not deserializable. "
 "Please register a custom transcoding for this type."
)
else:
 raise AssertionError("TypeError not raised")

The library’s abstract base class Transcoding
can be subclassed to define custom transcodings for other object types. To define
a custom transcoding, simply subclass this base class, assign to the class attribute
type the class transcoded type, and assign a string to the class attribute
name. Then define an encode()
method that converts an instance of that type to a representation that uses a basic
type, and a decode() method that will
convert that representation back to an instance of that type.

from eventsourcing.persistence import Transcoding
from typing import Union

class DateAsISO(Transcoding):
 type = date
 name = "date_iso"

 def encode(self, obj: date) -> str:
 return obj.isoformat()

 def decode(self, data: str) -> date:
 return date.fromisoformat(data)

transcoder.register(DateAsISO())

data = transcoder.encode(date1)
copy = transcoder.decode(data)
assert copy == date1

Please note, due to the way the Python json module works, it isn’t
currently possible to transcode subclasses of the basic Python types that
are supported by default, such as dict, list, tuple,
str, int, float, and bool. This behaviour
also means an encoded tuple will be decoded as a list.
This behaviour is coded in Python as C code, and can’t be suspended without
avoiding the use of this C code and thereby incurring a performance penalty
in the transcoding of domain event objects.

data = transcoder.encode((1, 2, 3))
copy = transcoder.decode(data)
assert isinstance(copy, list)
assert copy == [1, 2, 3]

Custom or non-basic types that contain other custom or non-basic types can be
supported in the transcoder by registering a transcoding for each non-basic type.
The transcoding for the type which contains non-basic types must return an object
that represents that type by involving the included non-basic objects, and this
representation will be subsequently transcoded by the transcoder using the applicable
transcoding for the included non-basic types. In the example below, SimpleCustomValue
has a UUID and a date as its id and data attributes.
The transcoding for SimpleCustomValue returns a Python dict that includes
the non-basic UUID and date objects. The class ComplexCustomValue
simply has a ComplexCustomValue object as its value attribute, and its
transcoding simply returns that object.

from uuid import UUID

class SimpleCustomValue:
 def __init__(self, id: UUID, date: date):
 self.id = id
 self.date = date

 def __eq__(self, other):
 return (
 isinstance(other, SimpleCustomValue) and
 self.id == other.id and self.date == other.date
)

class ComplexCustomValue:
 def __init__(self, value: SimpleCustomValue):
 self.value = value

 def __eq__(self, other):
 return (
 isinstance(other, ComplexCustomValue) and
 self.value == other.value
)

class SimpleCustomValueAsDict(Transcoding):
 type = SimpleCustomValue
 name = "simple_custom_value"

 def encode(self, obj: SimpleCustomValue) -> dict:
 return {"id": obj.id, "date": obj.date}

 def decode(self, data: dict) -> SimpleCustomValue:
 assert isinstance(data, dict)
 return SimpleCustomValue(**data)

class ComplexCustomValueAsDict(Transcoding):
 type = ComplexCustomValue
 name = "complex_custom_value"

 def encode(self, obj: ComplexCustomValue) -> SimpleCustomValue:
 return obj.value

 def decode(self, data: SimpleCustomValue) -> ComplexCustomValue:
 assert isinstance(data, SimpleCustomValue)
 return ComplexCustomValue(data)

The custom value object transcodings can be registered with the transcoder.

transcoder.register(SimpleCustomValueAsDict())
transcoder.register(ComplexCustomValueAsDict())

We can now transcode an instance of ComplexCustomValueAsDict.

obj1 = ComplexCustomValue(
 SimpleCustomValue(
 id=UUID("b2723fe2c01a40d2875ea3aac6a09ff5"),
 date=date(2000, 2, 20)
)
)

data = transcoder.encode(obj1)
copy = transcoder.decode(data)
assert copy == obj1

As you can see from the bytes representation below, the transcoder puts the return value
of each transcoding’s encode() method in a Python dict that has two values
data and _type_. The _data_ value is the return value of the
transcoding’s encode() method, and the _type_ value is the name of the
transcoding. For this reason, it is necessary to avoid defining model objects to have a
Python dict that has only two attributes _data_ and _type_, and
avoid defining transcodings that return such a thing.

expected_data = (
 b'{"_type_": "complex_custom_value", "_data_": {"_type_": '
 b'"simple_custom_value", "_data_": {"id": {"_type_": '
 b'"uuid_hex", "_data_": "b2723fe2c01a40d2875ea3aac6a09ff5"},'
 b' "date": {"_type_": "date_iso", "_data_": "2000-02-20"}'
 b'}}}'
)
assert data == expected_data

Stored event objects

A stored event object is a common object type that can be used to
represent domain event objects of different types. By using a
common object for the representation of different types of
domain events objects, the domain event objects can be stored
and retrieved in a standard way.

The library’s StoredEvent class
is a Python frozen dataclass that can be used to hold information
about a domain event object between it being serialised and being
recorded in a datastore, and between it be retrieved from a datastore
from an aggregate sequence and being deserialised as a domain event object.

from uuid import uuid4

from eventsourcing.persistence import StoredEvent

stored_event = StoredEvent(
 originator_id=uuid4(),
 originator_version=1,
 state="{}",
 topic="eventsourcing.model:DomainEvent",
)

Mapper

A mapper maps between domain event objects and stored event objects. It brings
together a transcoder, and optionally a cipher
and a compressor. It is used by an event store.

The library’s Mapper class
must be constructed with a transcoder object.

from eventsourcing.persistence import Mapper

mapper = Mapper(transcoder=transcoder)

The from_domain_event() method of the
mapper object converts DomainEvent objects to
StoredEvent objects.

from eventsourcing.domain import DomainEvent, TZINFO

domain_event1 = DomainEvent(
 originator_id = id1,
 originator_version = 1,
 timestamp = datetime.now(tz=TZINFO),
)

stored_event1 = mapper.from_domain_event(domain_event1)
assert isinstance(stored_event1, StoredEvent)

The to_domain_event() method of the
mapper object converts StoredEvent objects to
DomainEvent objects.

assert mapper.to_domain_event(stored_event1) == domain_event1

Encryption

Using a cryptographic cipher with your mapper will make the state of your application encrypted
“at rest” and “on the wire”.

Without encryption, the state of the domain event will be visible in the
recorded stored events in your database. For example, the timestamp
of the domain event in the example above (domain_event1) is visible
in the stored event (stored_event1).

assert domain_event1.timestamp.isoformat() in str(stored_event1.state)

The library’s AESCipher class can
be used to cryptographically encode and decode the state of stored
events. It must be constructed with a cipher key. The class method
create_key() can be used to
generate a cipher key. The AES cipher key must be either 16, 24, or
32 bytes long. Please note, the same cipher key must be used to
decrypt stored events as that which was used to encrypt stored events.

from eventsourcing.cipher import AESCipher

key = AESCipher.create_key(num_bytes=32) # 16, 24, or 32
cipher = AESCipher(cipher_key=key)

mapper = Mapper(
 transcoder=transcoder,
 cipher=cipher,
)

stored_event1 = mapper.from_domain_event(domain_event1)
assert isinstance(stored_event1, StoredEvent)
assert mapper.to_domain_event(stored_event1) == domain_event1

With encryption, the state of the domain event will not be visible in the
stored event. This feature can be used to implement “application-level
encryption” in an event-sourced application.

assert domain_event1.timestamp.isoformat() not in str(stored_event1.state)

The library’s AESCipher class uses the
AES cipher [https://pycryptodome.readthedocs.io/en/stable/src/cipher/aes.html]
from the PyCryptodome library [https://pycryptodome.readthedocs.io/en/stable/index.html]
in GCM mode [https://pycryptodome.readthedocs.io/en/stable/src/cipher/modern.html#gcm-mode].
AES is a very fast and secure symmetric block cipher, and is the de facto
standard for symmetric encryption. Galois/Counter Mode (GCM) is a mode of
operation for symmetric block ciphers that is designed to provide both data
authenticity and confidentiality, and is widely adopted for its performance.

The mapper expects an instance of the abstract base class Cipher,
and AESCipher implements this abstract base class,
so if you want to use another cipher strategy simply implement the base class.

Compression

A compressor can be used to reduce the size of stored events.

The library’s ZlibCompressor class
can be used to compress and decompress the state of stored events. The
size of the state of a compressed and encrypted stored event will be
less than or equal to the size of the state of a stored event that is
encrypted but not compressed.

from eventsourcing.compressor import ZlibCompressor

compressor = ZlibCompressor()

mapper = Mapper(
 transcoder=transcoder,
 cipher=cipher,
 compressor=compressor,
)

stored_event2 = mapper.from_domain_event(domain_event1)
assert mapper.to_domain_event(stored_event2) == domain_event1

assert len(stored_event2.state) <= len(stored_event1.state)

The library’s ZlibCompressor class
uses Python’s zlib module.

The mapper expects an instance of the abstract base class
Compressor, and
ZlibCompressor implements this
abstract base class, so if you want to use another compression
strategy simply implement the base class.

Notification objects

Event notifications are used to propagate the state of an event
sourced application in a reliable way. The stored events can be
positioned in a “total order” by giving each a new domain event
a notification ID that is higher that any previously recorded event.
By recording the domain events atomically with their notification IDs,
there will never be a domain event that is not available to be passed
as a message across a network, and there will never be a message
passed across a network that doesn’t correspond to a recorded event.
This solves the “dual writing” problem that occurs when separately
a domain model is updated and then a message is put on a message queue.

The library’s Notification class
is a Python frozen dataclass that can be used to hold information
about a domain event object when being transmitted as an item in a
section of a notification log.
It will be returned when selecting event notifications from a
recorder, and presented in an application by a
notification log.

from uuid import uuid4

from eventsourcing.persistence import Notification

stored_event = Notification(
 id=123,
 originator_id=uuid4(),
 originator_version=1,
 state="{}",
 topic="eventsourcing.model:DomainEvent",
)

Tracking objects

A tracking object can be used to encapsulate the position of
an event notification in an upstream application’s notification
log. A tracking object can be passed into a process recorder along
with new stored event objects, and recorded atomically with those
objects. By ensuring the uniqueness of recorded tracking objects,
we can ensure that a domain event notification is never processed
twice. By recording the position of the last event notification that
has been processed, we can ensure to resume processing event notifications
at the correct position. This constructs “exactly once” semantics
when processing event notifications, by solving the “dual writing”
problem that occurs when separately an event notification is consumed
from a message queue with updates made to materialized view, and then
an acknowledgement is sent back to the message queue.

The library’s Tracking class
is a Python frozen dataclass that can be used to hold the notification
ID of a notification that has been processed.

from uuid import uuid4

from eventsourcing.persistence import Tracking

tracking = Tracking(
 notification_id=123,
 application_name="bounded_context1",
)

Recorder

A recorder adapts a database management system for the purpose of
recording stored events. It is used by an event store.

The library’s Recorder class
is an abstract base for concrete recorder classes that will insert
stored event objects in a particular datastore.

There are three flavours of recorder: “aggregate recorders”
are the simplest and simply store domain events in aggregate
sequences; “application recorders” extend aggregate recorders
by storing domain events with a total order; “process recorders”
extend application recorders by supporting the recording of
domain events atomically with “tracking” objects that record
the position in a total ordering of domain events that is
being processed. The “aggregate recorder” can be used for
storing snapshots.

The library includes in its sqlite module
recorder classes for SQLite that use the Python sqlite3
module, and in its postgres module recorders for
PostgreSQL that use the third party psycopg2 module.

Recorder classes are conveniently constructed by using an
infrastructure factory. For illustrative purposes, the direct
use of the library’s SQLite recorders is shown below. The other persistence
modules follow a similar naming scheme and pattern of use.

from eventsourcing.sqlite import SQLiteAggregateRecorder
from eventsourcing.sqlite import SQLiteApplicationRecorder
from eventsourcing.sqlite import SQLiteProcessRecorder
from eventsourcing.sqlite import SQLiteDatastore

datastore = SQLiteDatastore(db_name=":memory:")
aggregate_recorder = SQLiteAggregateRecorder(datastore, "snapshots")
aggregate_recorder.create_table()

application_recorder = SQLiteApplicationRecorder(datastore)
application_recorder.create_table()

datastore = SQLiteDatastore(db_name=":memory:")
process_recorder = SQLiteProcessRecorder(datastore)
process_recorder.create_table()

The library also includes in the popo module recorders
that use “plain old Python objects”, which simply keep stored events in a
data structure in memory, and provides the fastest alternative for rapid
development of event sourced applications (~4x faster than using SQLite, and
~20x faster than using PostgreSQL).

Recorders compatible with this version of the library for popular ORMs such
as SQLAlchemy and Django, specialist event stores such as EventStoreDB and
AxonDB, and NoSQL databases such as DynamoDB and MongoDB are forthcoming.

Event store

An event store provides a common interface for storing and retrieving
domain event objects. It combines a mapper and a
recorder, so that domain event objects can be
converted to stored event objects and then stored event objects
can be recorded in a datastore.

The library’s EventStore class must
be constructed with a mapper and a recorder.

The EventStore has an object method
put() which can be used to
store a list of new domain event objects. If any of these domain event
objects conflict with any already existing domain event object (because
they have the same aggregate ID and version number), an exception will
be raised and none of the new events will be stored.

The EventStore has an object method
get() which can be used to
get a list of domain event objects. Only the originator_id argument
is required, which is the ID of the aggregate for which existing events
are wanted. The arguments gt, lte, limit, and desc
condition the selection of events to be greater than a particular version
number, less then or equal to a particular version number, limited in
number, or selected in a descending fashion. The selection is by default
ascending, unlimited, and otherwise unrestricted such that all the previously
stored domain event objects for a particular aggregate will be returned
in the order in which they were created.

from eventsourcing.persistence import EventStore

event_store = EventStore(
 mapper=mapper,
 recorder=application_recorder,
)

event_store.put([domain_event1])

domain_events = list(event_store.get(id1))
assert domain_events == [domain_event1]

Infrastructure factory

An infrastructure factory helps with the construction of the persistence
infrastructure objects mentioned above. By reading and responding to
particular environment variables, the persistence infrastructure of an
event-sourced application can be easily
configured in different ways at different times.

The library’s InfrastructureFactory class
is a base class for concrete infrastructure factories that help with the construction
of persistence objects that use a particular database in a particular way.

The class method construct()
will, by default, construct the library’s “plain old Python objects”
infrastructure Factory, which uses recorders that simply
keep stored events in a data structure in memory (see eventsourcing.popo).

from eventsourcing.persistence import InfrastructureFactory

factory = InfrastructureFactory.construct()

recorder = factory.application_recorder()
mapper = factory.mapper(transcoder=transcoder)
event_store = factory.event_store(
 mapper=mapper,
 recorder=recorder,
)

event_store.put([domain_event1])
stored_events = list(event_store.get(id1))
assert stored_events == [domain_event1]

The optional environment variables COMPRESSOR_TOPIC, CIPHER_KEY, and CIPHER_TOPIC may
be used to enable compression and encryption of stored events when using POPO infrastructure.

SQLite

The module eventsourcing.sqlite supports storing events in SQLite.

The library’s SQLite Factory uses various
environment variables to control the construction and configuration of its
persistence infrastructure.

The environment variable SQLITE_DBNAME is required to set the name of a database,
normally a file path, but the special name :memory: can be used to create an
in-memory database.

The optional environment variable SQLITE_LOCK_TIMEOUT may be used to adjust the SQLite timeout
value. A file-based SQLite database will have its journal mode set to use write-ahead
logging (WAL), which allows reading to proceed concurrently reading and writing. Writing
is serialised with a lock. Setting this value to a positive number of seconds will cause
attempts to lock the SQLite database for writing to timeout after that duration. By default
this value is 5 (seconds).

The optional environment variables COMPRESSOR_TOPIC, CIPHER_KEY, and CIPHER_TOPIC may
be used to enable compression and encryption of stored events.

The optional environment variable CREATE_TABLE may be control whether database tables are created.
If the tables already exist, the CREATE_TABLE may be set to a “false” value ("n",
"no", "f", "false", "off", or "0"). This value is by default “true”
which is normally okay because the tables are created only if they do not exist.

import os

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.sqlite:Factory"
os.environ["SQLITE_DBNAME"] = ":memory:"
os.environ["SQLITE_LOCK_TIMEOUT"] = "10"

factory = InfrastructureFactory.construct()

recorder = factory.application_recorder()
mapper = factory.mapper(transcoder=transcoder)
event_store = factory.event_store(
 mapper=mapper,
 recorder=recorder,
)

event_store.put([domain_event1])
stored_events = list(event_store.get(id1))
assert stored_events == [domain_event1]

PostgreSQL

The module eventsourcing.postgres supports storing events in PostgresSQL.

The library’s PostgreSQL Factory uses various
environment variables to control the construction and configuration of its persistence
infrastructure.

The environment variables POSTGRES_DBNAME, POSTGRES_HOST, POSTGRES_PORT,
POSTGRES_USER, and POSTGRES_PASSWORD are required to set the name of a database,
the database server’s host name and port number, and the database user name and password.

The optional environment variable POSTGRES_CONN_MAX_AGE is used to control the length of time in
seconds before a connection is closed. By default this value is not set, and connections will
be reused indefinitely (or until an operational database error is encountered). If this
value is set to a positive integer, the connection will be closed after this number of
seconds from the time it was created, but only when the connection is idle. If this value
if set to zero, each connection will only be used for one transaction. Setting this value
to an empty string has the same effect as not setting this value. Setting this value to
any other value will cause an environment error exception to be raised. If your database
terminates idle connections after some time, you should set POSTGRES_CONN_MAX_AGE to a
lower value, so that attempts are not made to use connections that have been terminated
by the database server.

The optional environment variable POSTGRES_PRE_PING may be used to enable pessimistic
disconnection handling. Setting this to a “true” value ("y", "yes", "t", "true",
"on", or "1") means database connections will be checked that they are usable before
executing statements, and database connections remade if the connection is not usable. This
value is by default “false”, meaning connections will not be checked before they are reused.
Enabling this option will incur a small impact on performance.

The optional environment variable POSTGRES_LOCK_TIMEOUT may be used to enable a timeout
on acquiring an ‘EXCLUSIVE’ mode table lock when inserting stored events. To avoid interleaving
of inserts when writing events, an ‘EXCLUSIVE’ mode table lock is acquired when inserting events.
This effectively serialises writing events. It prevents concurrent transactions interleaving inserts,
which would potentially cause notification log readers that are tailing the application notification
log to miss event notifications. Reading from the table can proceed concurrently with other readers
and writers, since selecting acquires an ‘ACCESS SHARE’ lock which does not block and is not blocked
by the ‘EXCLUSIVE’ lock. This issue of interleaving inserts by concurrent writers is not exhibited
by SQLite, which supports concurrent readers when its journal mode is set to use write ahead logging.
By default, this timeout has the value of 0 seconds, which means attempts to acquire the lock will
not timeout. Setting this value to a positive integer number of seconds will cause attempt to obtain this
lock to timeout after that duration has passed. The lock will be released when the transaction ends.

The optional environment variable POSTGRES_IDLE_IN_TRANSACTION_SESSION_TIMEOUT may be used to
timeout sessions that are idle in a transaction. If a transaction cannot be ended for some reason,
perhaps because the database server cannot be reached, the transaction may remain in an idle
state and any locks will continue to be held. By timing out the session, transactions will be ended,
locks will be released, and the connection slot will be freed. By default, this timeout has the value
of 0 seconds, which means sessions in an idle transaction will not timeout. Setting this value to a
positive integer number of seconds will cause sessions in an idle transaction to timeout after that duration
has passed.

The optional environment variables COMPRESSOR_TOPIC, CIPHER_KEY, and CIPHER_TOPIC may
be used to enable compression and encryption of stored events.

The optional environment variable CREATE_TABLE may be control whether database tables are created.
If the tables already exist, the CREATE_TABLE may be set to a “false” value ("n",
"no", "f", "false", "off", or "0"). This value is by default “true”
which is normally okay because the tables are created only if they do not exist.

import os

os.environ["INFRASTRUCTURE_FACTORY"] = "eventsourcing.postgres:Factory"
os.environ["POSTGRES_DBNAME"] = "eventsourcing"
os.environ["POSTGRES_HOST"] = "127.0.0.1"
os.environ["POSTGRES_PORT"] = "5432"
os.environ["POSTGRES_USER"] = "eventsourcing"
os.environ["POSTGRES_PASSWORD"] = "eventsourcing"
os.environ["POSTGRES_CONN_MAX_AGE"] = "10"
os.environ["POSTGRES_PRE_PING"] = "y"
os.environ["POSTGRES_LOCK_TIMEOUT"] = "5"
os.environ["POSTGRES_IDLE_IN_TRANSACTION_SESSION_TIMEOUT"] = "5"

factory = InfrastructureFactory.construct()

recorder = factory.application_recorder()
mapper = factory.mapper(transcoder=transcoder)
event_store = factory.event_store(
 mapper=mapper,
 recorder=recorder,
)

event_store.put([domain_event1])
stored_events = list(event_store.get(id1))
assert stored_events == [domain_event1]

Classes

	
class eventsourcing.persistence.Transcoding[source]

	Bases: abc.ABC

Abstract base class for custom transcodings.

	
type

	Object type of transcoded object.

	
name

	Name of transcoding.

	
encode(obj: Any) → Any[source]

	Encodes given object.

	
decode(data: Any) → Any[source]

	Decodes encoded object.

	
class eventsourcing.persistence.Transcoder[source]

	Bases: abc.ABC

Abstract base class for transcoders.

	
__init__() → None[source]

	Initialize self. See help(type(self)) for accurate signature.

	
register(transcoding: eventsourcing.persistence.Transcoding) → None[source]

	Registers given transcoding with the transcoder.

	
encode(obj: Any) → bytes[source]

	Encodes obj as bytes.

	
decode(data: bytes) → Any[source]

	Decodes obj from bytes.

	
class eventsourcing.persistence.JSONTranscoder[source]

	Bases: eventsourcing.persistence.Transcoder

Extensible transcoder that uses the Python json module.

	
__init__() → None[source]

	Initialize self. See help(type(self)) for accurate signature.

	
encode(obj: Any) → bytes[source]

	Encodes given object as a bytes array.

	
decode(data: bytes) → Any[source]

	Decodes bytes array as previously encoded object.

	
class eventsourcing.persistence.UUIDAsHex[source]

	Bases: eventsourcing.persistence.Transcoding

Transcoding that represents UUID objects as hex values.

	
type

	alias of uuid.UUID

	
encode(obj: uuid.UUID) → str[source]

	Encodes given object.

	
decode(data: str) → uuid.UUID[source]

	Decodes encoded object.

	
class eventsourcing.persistence.DecimalAsStr[source]

	Bases: eventsourcing.persistence.Transcoding

Transcoding that represents Decimal objects as strings.

	
type

	alias of decimal.Decimal

	
encode(obj: decimal.Decimal) → str[source]

	Encodes given object.

	
decode(data: str) → decimal.Decimal[source]

	Decodes encoded object.

	
class eventsourcing.persistence.DatetimeAsISO[source]

	Bases: eventsourcing.persistence.Transcoding

Transcoding that represents datetime objects as ISO strings.

	
type

	alias of datetime.datetime

	
encode(obj: datetime.datetime) → str[source]

	Encodes given object.

	
decode(data: str) → datetime.datetime[source]

	Decodes encoded object.

	
class eventsourcing.persistence.StoredEvent(originator_id: uuid.UUID, originator_version: int, topic: str, state: bytes)[source]

	Bases: object

Frozen dataclass that represents DomainEvent
objects, such as aggregate Event
objects and Snapshot objects.

Constructor parameters:

	Parameters

	
	originator_id (UUID) – ID of the originating aggregate

	originator_version (int) – version of the originating aggregate

	topic (str) – topic of the domain event object class

	state (bytes) – serialised state of the domain event object

	
class eventsourcing.persistence.Compressor[source]

	Bases: abc.ABC

Base class for compressors.

	
compress(data: bytes) → bytes[source]

	Compress bytes.

	
decompress(data: bytes) → bytes[source]

	Decompress bytes.

	
class eventsourcing.persistence.Cipher(cipher_key: str)[source]

	Bases: abc.ABC

Base class for ciphers.

	
__init__(cipher_key: str)[source]

	Initialises cipher with given key.

	
encrypt(plaintext: bytes) → bytes[source]

	Return ciphertext for given plaintext.

	
decrypt(ciphertext: bytes) → bytes[source]

	Return plaintext for given ciphertext.

	
class eventsourcing.persistence.Mapper(transcoder: eventsourcing.persistence.Transcoder, compressor: Optional[eventsourcing.persistence.Compressor] = None, cipher: Optional[eventsourcing.persistence.Cipher] = None)[source]

	Bases: typing.Generic

Converts between domain event objects and StoredEvent objects.

Uses a Transcoder, and optionally a cryptographic cipher and compressor.

	
__init__(transcoder: eventsourcing.persistence.Transcoder, compressor: Optional[eventsourcing.persistence.Compressor] = None, cipher: Optional[eventsourcing.persistence.Cipher] = None)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
from_domain_event(domain_event: TDomainEvent) → eventsourcing.persistence.StoredEvent[source]

	Converts the given domain event to a StoredEvent object.

	
to_domain_event(stored: eventsourcing.persistence.StoredEvent) → TDomainEvent[source]

	Converts the given StoredEvent to a domain event object.

	
exception eventsourcing.persistence.RecordConflictError[source]

	Bases: Exception

Legacy exception, replaced with IntegrityError.

	
exception eventsourcing.persistence.PersistenceError[source]

	Bases: Exception

The base class of the other exceptions in this module.

Exception class names follow https://www.python.org/dev/peps/pep-0249/#exceptions

	
exception eventsourcing.persistence.InterfaceError[source]

	Bases: eventsourcing.persistence.PersistenceError

Exception raised for errors that are related to the database
interface rather than the database itself.

	
exception eventsourcing.persistence.DatabaseError[source]

	Bases: eventsourcing.persistence.PersistenceError

Exception raised for errors that are related to the database.

	
exception eventsourcing.persistence.DataError[source]

	Bases: eventsourcing.persistence.DatabaseError

Exception raised for errors that are due to problems with the
processed data like division by zero, numeric value out of range, etc.

	
exception eventsourcing.persistence.OperationalError[source]

	Bases: eventsourcing.persistence.DatabaseError

Exception raised for errors that are related to the database’s
operation and not necessarily under the control of the programmer,
e.g. an unexpected disconnect occurs, the data source name is not
found, a transaction could not be processed, a memory allocation
error occurred during processing, etc.

	
exception eventsourcing.persistence.IntegrityError[source]

	Bases: eventsourcing.persistence.DatabaseError, eventsourcing.persistence.RecordConflictError

Exception raised when the relational integrity of the
database is affected, e.g. a foreign key check fails.

	
exception eventsourcing.persistence.InternalError[source]

	Bases: eventsourcing.persistence.DatabaseError

Exception raised when the database encounters an internal
error, e.g. the cursor is not valid anymore, the transaction
is out of sync, etc.

	
exception eventsourcing.persistence.ProgrammingError[source]

	Bases: eventsourcing.persistence.DatabaseError

Exception raised for programming errors, e.g. table not
found or already exists, syntax error in the SQL statement,
wrong number of parameters specified, etc.

	
exception eventsourcing.persistence.NotSupportedError[source]

	Bases: eventsourcing.persistence.DatabaseError

Exception raised in case a method or database API was used
which is not supported by the database, e.g. calling the
rollback() method on a connection that does not support
transaction or has transactions turned off.

	
class eventsourcing.persistence.Recorder[source]

	Bases: abc.ABC

Abstract base class for stored event recorders.

	
class eventsourcing.persistence.AggregateRecorder[source]

	Bases: eventsourcing.persistence.Recorder

Abstract base class for recorders that record and
retrieve stored events for domain model aggregates.

	
insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs) → None[source]

	Writes stored events into database.

	
select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int] = None, desc: bool = False, limit: Optional[int] = None) → List[eventsourcing.persistence.StoredEvent][source]

	Reads stored events from database.

	
class eventsourcing.persistence.Notification(originator_id: uuid.UUID, originator_version: int, topic: str, state: bytes, id: int)[source]

	Bases: eventsourcing.persistence.StoredEvent

Frozen dataclass that represents domain event notifications.

	
class eventsourcing.persistence.ApplicationRecorder[source]

	Bases: eventsourcing.persistence.AggregateRecorder

Abstract base class for recorders that record and
retrieve stored events for domain model aggregates.

Extends the behaviour of aggregate recorders by
recording aggregate events in a total order that
allows the stored events also to be retrieved
as event notifications.

	
select_notifications(start: int, limit: int) → List[eventsourcing.persistence.Notification][source]

	Returns a list of event notifications
from ‘start’, limited by ‘limit’.

	
max_notification_id() → int[source]

	Returns the maximum notification ID.

	
class eventsourcing.persistence.ProcessRecorder[source]

	Bases: eventsourcing.persistence.ApplicationRecorder

Abstract base class for recorders that record and
retrieve stored events for domain model aggregates.

Extends the behaviour of applications recorders by
recording aggregate events with tracking information
that records the position of a processed event
notification in a notification log.

	
max_tracking_id(application_name: str) → int[source]

	Returns the last recorded notification ID from given application.

	
class eventsourcing.persistence.EventStore(mapper: eventsourcing.persistence.Mapper[~TDomainEvent][TDomainEvent], recorder: eventsourcing.persistence.AggregateRecorder)[source]

	Bases: typing.Generic

Stores and retrieves domain events.

	
__init__(mapper: eventsourcing.persistence.Mapper[~TDomainEvent][TDomainEvent], recorder: eventsourcing.persistence.AggregateRecorder)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
put(events: List[TDomainEvent], **kwargs) → None[source]

	Stores domain events in aggregate sequence.

	
get(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int] = None, desc: bool = False, limit: Optional[int] = None) → Iterator[TDomainEvent][source]

	Retrieves domain events from aggregate sequence.

	
class eventsourcing.persistence.InfrastructureFactory(application_name: str, env: Mapping[KT, VT_co])[source]

	Bases: abc.ABC

Abstract base class for infrastructure factories.

	
classmethod construct(application_name: str = '', env: Optional[Mapping[KT, VT_co]] = None) → eventsourcing.persistence.InfrastructureFactory[source]

	Constructs concrete infrastructure factory for given
named application. Reads and resolves infrastructure
factory class topic from environment variable ‘INFRASTRUCTURE_FACTORY’.

	
__init__(application_name: str, env: Mapping[KT, VT_co])[source]

	Initialises infrastructure factory object with given application name.

	
getenv(key: str, default: Optional[str] = None, application_name: str = '') → Optional[str][source]

	Returns value of environment variable defined by given key.

	
mapper(transcoder: eventsourcing.persistence.Transcoder, application_name: str = '') → eventsourcing.persistence.Mapper[source]

	Constructs a mapper.

	
cipher(application_name: str) → Optional[eventsourcing.persistence.Cipher][source]

	Reads environment variables ‘CIPHER_TOPIC’
and ‘CIPHER_KEY’ to decide whether or not
to construct a cipher.

	
compressor(application_name: str) → Optional[eventsourcing.persistence.Compressor][source]

	Reads environment variable ‘COMPRESSOR_TOPIC’ to
decide whether or not to construct a compressor.

	
static event_store(**kwargs) → eventsourcing.persistence.EventStore[source]

	Constructs an event store.

	
aggregate_recorder(purpose: str = 'events') → eventsourcing.persistence.AggregateRecorder[source]

	Constructs an aggregate recorder.

	
application_recorder() → eventsourcing.persistence.ApplicationRecorder[source]

	Constructs an application recorder.

	
process_recorder() → eventsourcing.persistence.ProcessRecorder[source]

	Constructs a process recorder.

	
is_snapshotting_enabled() → bool[source]

	Decides whether or not snapshotting is enabled by
reading environment variable ‘IS_SNAPSHOTTING_ENABLED’.
Snapshotting is not enabled by default.

	
class eventsourcing.persistence.Tracking(application_name: str, notification_id: int)[source]

	Bases: object

Frozen dataclass representing the position of a domain
event Notification in an application’s notification log.

	
class eventsourcing.popo.POPOAggregateRecorder[source]

	Bases: eventsourcing.persistence.AggregateRecorder

	
__init__() → None[source]

	Initialize self. See help(type(self)) for accurate signature.

	
insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs) → None[source]

	Writes stored events into database.

	
select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int] = None, desc: bool = False, limit: Optional[int] = None) → List[eventsourcing.persistence.StoredEvent][source]

	Reads stored events from database.

	
class eventsourcing.popo.POPOApplicationRecorder[source]

	Bases: eventsourcing.persistence.ApplicationRecorder, eventsourcing.popo.POPOAggregateRecorder

	
select_notifications(start: int, limit: int) → List[eventsourcing.persistence.Notification][source]

	Returns a list of event notifications
from ‘start’, limited by ‘limit’.

	
max_notification_id() → int[source]

	Returns the maximum notification ID.

	
class eventsourcing.popo.POPOProcessRecorder[source]

	Bases: eventsourcing.persistence.ProcessRecorder, eventsourcing.popo.POPOApplicationRecorder

	
__init__() → None[source]

	Initialize self. See help(type(self)) for accurate signature.

	
max_tracking_id(application_name: str) → int[source]

	Returns the last recorded notification ID from given application.

	
class eventsourcing.popo.Factory(application_name: str, env: Mapping[KT, VT_co])[source]

	Bases: eventsourcing.persistence.InfrastructureFactory

	
aggregate_recorder(purpose: str = 'events') → eventsourcing.persistence.AggregateRecorder[source]

	Constructs an aggregate recorder.

	
application_recorder() → eventsourcing.persistence.ApplicationRecorder[source]

	Constructs an application recorder.

	
process_recorder() → eventsourcing.persistence.ProcessRecorder[source]

	Constructs a process recorder.

	
class eventsourcing.sqlite.SQLiteAggregateRecorder(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = 'stored_events')[source]

	Bases: eventsourcing.persistence.AggregateRecorder

	
__init__(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = 'stored_events')[source]

	Initialize self. See help(type(self)) for accurate signature.

	
insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs) → None[source]

	Writes stored events into database.

	
select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int] = None, desc: bool = False, limit: Optional[int] = None) → List[eventsourcing.persistence.StoredEvent][source]

	Reads stored events from database.

	
class eventsourcing.sqlite.SQLiteApplicationRecorder(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = 'stored_events')[source]

	Bases: eventsourcing.sqlite.SQLiteAggregateRecorder, eventsourcing.persistence.ApplicationRecorder

	
__init__(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = 'stored_events')[source]

	Initialize self. See help(type(self)) for accurate signature.

	
select_notifications(start: int, limit: int) → List[eventsourcing.persistence.Notification][source]

	Returns a list of event notifications
from ‘start’, limited by ‘limit’.

	
max_notification_id() → int[source]

	Returns the maximum notification ID.

	
class eventsourcing.sqlite.SQLiteProcessRecorder(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = 'stored_events')[source]

	Bases: eventsourcing.sqlite.SQLiteApplicationRecorder, eventsourcing.persistence.ProcessRecorder

	
__init__(datastore: eventsourcing.sqlite.SQLiteDatastore, events_table_name: str = 'stored_events')[source]

	Initialize self. See help(type(self)) for accurate signature.

	
max_tracking_id(application_name: str) → int[source]

	Returns the last recorded notification ID from given application.

	
class eventsourcing.sqlite.Factory(application_name: str, env: Mapping[KT, VT_co])[source]

	Bases: eventsourcing.persistence.InfrastructureFactory

	
__init__(application_name: str, env: Mapping[KT, VT_co])[source]

	Initialises infrastructure factory object with given application name.

	
aggregate_recorder(purpose: str = 'events') → eventsourcing.persistence.AggregateRecorder[source]

	Constructs an aggregate recorder.

	
application_recorder() → eventsourcing.persistence.ApplicationRecorder[source]

	Constructs an application recorder.

	
process_recorder() → eventsourcing.persistence.ProcessRecorder[source]

	Constructs a process recorder.

	
class eventsourcing.postgres.PostgresAggregateRecorder(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str)[source]

	Bases: eventsourcing.persistence.AggregateRecorder

	
__init__(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
insert_events(stored_events: List[eventsourcing.persistence.StoredEvent], **kwargs) → None[source]

	Writes stored events into database.

	
select_events(originator_id: uuid.UUID, gt: Optional[int] = None, lte: Optional[int] = None, desc: bool = False, limit: Optional[int] = None) → List[eventsourcing.persistence.StoredEvent][source]

	Reads stored events from database.

	
class eventsourcing.postgres.PostgresApplicationRecorder(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str = 'stored_events')[source]

	Bases: eventsourcing.postgres.PostgresAggregateRecorder, eventsourcing.persistence.ApplicationRecorder

	
__init__(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str = 'stored_events')[source]

	Initialize self. See help(type(self)) for accurate signature.

	
select_notifications(start: int, limit: int) → List[eventsourcing.persistence.Notification][source]

	Returns a list of event notifications
from ‘start’, limited by ‘limit’.

	
max_notification_id() → int[source]

	Returns the maximum notification ID.

	
class eventsourcing.postgres.PostgresProcessRecorder(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str, tracking_table_name: str)[source]

	Bases: eventsourcing.postgres.PostgresApplicationRecorder, eventsourcing.persistence.ProcessRecorder

	
__init__(datastore: eventsourcing.postgres.PostgresDatastore, events_table_name: str, tracking_table_name: str)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
max_tracking_id(application_name: str) → int[source]

	Returns the last recorded notification ID from given application.

	
class eventsourcing.postgres.Factory(application_name: str, env: Mapping[KT, VT_co])[source]

	Bases: eventsourcing.persistence.InfrastructureFactory

	
__init__(application_name: str, env: Mapping[KT, VT_co])[source]

	Initialises infrastructure factory object with given application name.

	
aggregate_recorder(purpose: str = 'events') → eventsourcing.persistence.AggregateRecorder[source]

	Constructs an aggregate recorder.

	
application_recorder() → eventsourcing.persistence.ApplicationRecorder[source]

	Constructs an application recorder.

	
process_recorder() → eventsourcing.persistence.ProcessRecorder[source]

	Constructs a process recorder.

system — Event-driven systems

This module shows how event-sourced applications can be combined to make an event driven
system.

this page is under development — please check back soon

System of applications

The library’s system class…

from eventsourcing.system import System

from dataclasses import dataclass
from uuid import uuid4

from eventsourcing.domain import Aggregate, AggregateCreated, AggregateEvent

class World(Aggregate):
 def __init__(self, **kwargs):
 super(World, self).__init__(**kwargs)
 self.history = []

 @classmethod
 def create(cls):
 return cls._create(
 event_class=cls.Created,
 id=uuid4(),
)

 class Created(AggregateCreated):
 pass

 def make_it_so(self, what):
 self.trigger_event(self.SomethingHappened, what=what)

 class SomethingHappened(AggregateEvent):
 what: str

 def apply(self, world):
 world.history.append(self.what)

Now let’s define an application…

from eventsourcing.application import Application

class WorldsApplication(Application):

 def create_world(self):
 world = World.create()
 self.save(world)
 return world.id

 def make_it_so(self, world_id, what):
 world = self.repository.get(world_id)
 world.make_it_so(what)
 self.save(world)

 def get_world_history(self, world_id):
 world = self.repository.get(world_id)
 return list(world.history)

Now let’s define an analytics application…

from uuid import uuid5, NAMESPACE_URL

class Counter(Aggregate):
 def __init__(self, **kwargs):
 super(Counter, self).__init__(**kwargs)
 self.count = 0

 @classmethod
 def create_id(cls, name):
 return uuid5(NAMESPACE_URL, f'/counters/{name}')

 @classmethod
 def create(cls, name):
 return cls._create(
 event_class=cls.Created,
 id=cls.create_id(name),
)

 class Created(AggregateCreated):
 pass

 def increment(self):
 self.trigger_event(self.Incremented)

 class Incremented(AggregateEvent):
 def apply(self, counter):
 counter.count += 1

from eventsourcing.application import AggregateNotFound
from eventsourcing.system import ProcessApplication
from eventsourcing.dispatch import singledispatchmethod

class Counters(ProcessApplication):

 def policy(self, domain_event, process_event):
 pass

 @singledispatchmethod
 def policy(self, domain_event, process_event):
 """Default policy"""

 @policy.register(World.SomethingHappened)
 def _(self, domain_event, process_event):
 what = domain_event.what
 counter_id = Counter.create_id(what)
 try:
 counter = self.repository.get(counter_id)
 except AggregateNotFound:
 counter = Counter.create(what)
 counter.increment()
 process_event.save(counter)

 def get_count(self, what):
 counter_id = Counter.create_id(what)
 try:
 counter = self.repository.get(counter_id)
 except AggregateNotFound:
 return 0
 return counter.count

system = System(pipes=[[WorldsApplication, Counters]])

Single-threaded runner

from eventsourcing.system import SingleThreadedRunner

runner= SingleThreadedRunner(system)
runner.start()
worlds = runner.get(WorldsApplication)
counters = runner.get(Counters)

world_id1 = worlds.create_world()
world_id2 = worlds.create_world()
world_id3 = worlds.create_world()

assert counters.get_count('dinosaurs') == 0
assert counters.get_count('trucks') == 0
assert counters.get_count('internet') == 0

worlds.make_it_so(world_id1, 'dinosaurs')
worlds.make_it_so(world_id2, 'dinosaurs')
worlds.make_it_so(world_id3, 'dinosaurs')

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 0
assert counters.get_count('internet') == 0

worlds.make_it_so(world_id1, 'trucks')
worlds.make_it_so(world_id2, 'trucks')

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 2
assert counters.get_count('internet') == 0

worlds.make_it_so(world_id1, 'internet')

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 2
assert counters.get_count('internet') == 1

Multi-threaded runner

from eventsourcing.system import MultiThreadedRunner

runner= MultiThreadedRunner(system)
runner.start()
worlds = runner.get(WorldsApplication)
counters = runner.get(Counters)

world_id1 = worlds.create_world()
world_id2 = worlds.create_world()
world_id3 = worlds.create_world()

worlds.make_it_so(world_id1, 'dinosaurs')
worlds.make_it_so(world_id2, 'dinosaurs')
worlds.make_it_so(world_id3, 'dinosaurs')

worlds.make_it_so(world_id1, 'trucks')
worlds.make_it_so(world_id2, 'trucks')

worlds.make_it_so(world_id1, 'internet')

from time import sleep

sleep(0.01)

assert counters.get_count('dinosaurs') == 3
assert counters.get_count('trucks') == 2
assert counters.get_count('internet') == 1

…

Classes

	
class eventsourcing.system.ProcessEvent(tracking: Optional[eventsourcing.persistence.Tracking] = None)[source]

	Bases: object

Keeps together a Tracking
object, which represents the position of a domain event notification
in the notification log of a particular application, and the
new domain events that result from processing that notification.

	
__init__(tracking: Optional[eventsourcing.persistence.Tracking] = None)[source]

	Initalises the process event with the given tracking object.

	
save(*aggregates) → None[source]

	Collects pending domain events from the given aggregate.

	
class eventsourcing.system.Follower[source]

	Bases: eventsourcing.application.Application

Extends the Application class
by using a process recorder as its application recorder, by keeping
track of the applications it is following, and pulling and processing
new domain event notifications through its policy() method.

	
__init__() → None[source]

	Initialises an application with an
InfrastructureFactory,
a Mapper,
an ApplicationRecorder,
an EventStore,
a Repository, and
a LocalNotificationLog.

	
construct_recorder() → eventsourcing.persistence.ProcessRecorder[source]

	Constructs and returns a ProcessRecorder
for the application to use as its application recorder.

	
follow(name: str, log: eventsourcing.application.NotificationLog) → None[source]

	Constructs a notification log reader and a mapper for
the named application, and adds them to its collection
of readers.

	
pull_and_process(name: str) → None[source]

	Pulls and processes unseen domain event notifications
from the notification log reader of the names application.

Converts received event notifications to domain
event objects, and then calls the policy()
with a new ProcessEvent object which
contains a Tracking
object that keeps track of the name of the application
and the position in its notification log from which the
domain event notification was pulled. The policy will
save aggregates to the process event object, using its
save() method, which collects pending
domain events using the aggregates’
collect_events()
method, and the process event object will then be recorded
by calling the record() method.

	
policy(domain_event: eventsourcing.domain.AggregateEvent, process_event: eventsourcing.system.ProcessEvent) → None[source]

	Abstract domain event processing policy method. Must be
implemented by event processing applications. When
processing the given domain event, event processing
applications must use the save()
method of the given process event object (instead of
the application’s save()
method) to collect pending events from changed aggregates,
so that the new domain events will be recorded atomically
with tracking information about the position of the given
domain event’s notification.

	
record(process_event: eventsourcing.system.ProcessEvent) → None[source]

	Records given process event in the application’s process recorder.

	
class eventsourcing.system.Promptable[source]

	Bases: abc.ABC

Abstract base class for “promptable” objects.

	
receive_prompt(leader_name: str) → None[source]

	Receives the name of leader that has new domain
event notifications.

	
class eventsourcing.system.Leader[source]

	Bases: eventsourcing.application.Application

Extends the Application
class by also being responsible for keeping track of
followers, and prompting followers when there are new
domain event notifications to be pulled and processed.

	
__init__() → None[source]

	Initialises an application with an
InfrastructureFactory,
a Mapper,
an ApplicationRecorder,
an EventStore,
a Repository, and
a LocalNotificationLog.

	
lead(follower: eventsourcing.system.Promptable) → None[source]

	Adds given follower to a list of followers.

	
notify(new_events: List[eventsourcing.domain.AggregateEvent]) → None[source]

	Extends the application notify()
method by calling prompt_followers() whenever new events have just
been saved.

	
prompt_followers() → None[source]

	Prompts followers by calling their receive_prompt()
methods with the name of the application.

	
class eventsourcing.system.ProcessApplication[source]

	Bases: eventsourcing.system.Leader, eventsourcing.system.Follower, abc.ABC

Base class for event processing applications
that are both “leaders” and followers”.

	
class eventsourcing.system.System(pipes: Iterable[Iterable[Type[eventsourcing.application.Application]]])[source]

	Bases: object

Defines a system of applications.

	
__init__(pipes: Iterable[Iterable[Type[eventsourcing.application.Application]]])[source]

	Initialize self. See help(type(self)) for accurate signature.

	
class eventsourcing.system.Runner(system: eventsourcing.system.System)[source]

	Bases: abc.ABC

Abstract base class for system runners.

	
__init__(system: eventsourcing.system.System)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
start() → None[source]

	Starts the runner.

	
stop() → None[source]

	Stops the runner.

	
get(cls: Type[A]) → A[source]

	Returns an application instance for given application class.

	
exception eventsourcing.system.RunnerAlreadyStarted[source]

	Bases: Exception

Raised when runner is already started.

	
class eventsourcing.system.SingleThreadedRunner(system: eventsourcing.system.System)[source]

	Bases: eventsourcing.system.Runner, eventsourcing.system.Promptable

Runs a System in a single thread.
A single threaded runner is a runner, and so implements the
start(), stop(), and get() methods.
A single threaded runner is also a Promptable object, and
implements the receive_prompt() method by collecting prompted
names.

	
__init__(system: eventsourcing.system.System)[source]

	Initialises runner with the given System.

	
start() → None[source]

	Starts the runner.
The applications are constructed, and setup to lead and follow
each other, according to the system definition.
The followers are setup to follow the applications they follow
(have a notification log reader with the notification log of the
leader), and their leaders are setup to lead the runner itself
(send prompts).

	
receive_prompt(leader_name: str) → None[source]

	Receives prompt by appending name of
leader to list of prompted names.
Unless this method has previously been called but not
yet returned, it will then proceed to forward the prompts
received to its application by calling the application’s
pull_and_process() method for each prompted name.

	
stop() → None[source]

	Stops the runner.

	
get(cls: Type[A]) → A[source]

	Returns an application instance for given application class.

	
class eventsourcing.system.MultiThreadedRunner(system: eventsourcing.system.System)[source]

	Bases: eventsourcing.system.Runner

Runs a System with a MultiThreadedRunnerThread for each
follower in the system definition.
It is a runner, and so implements the start(), stop(),
and get() methods.

	
__init__(system: eventsourcing.system.System)[source]

	Initialises runner with the given System.

	
start() → None[source]

	Starts the runner.

A multi-threaded runner thread is started for each
‘follower’ application in the system, and constructs
an instance of each non-follower leader application in
the system. The followers are then setup to follow the
applications they follow (have a notification log reader
with the notification log of the leader), and their leaders
are setup to lead the follower’s thead (send prompts).

	
stop() → None[source]

	Stops the runner.

	
get(cls: Type[A]) → A[source]

	Returns an application instance for given application class.

	
class eventsourcing.system.MultiThreadedRunnerThread(app_class: Type[eventsourcing.system.Follower], is_stopping: threading.Event)[source]

	Bases: eventsourcing.system.Promptable, threading.Thread

Runs one process application for a
MultiThreadedRunner.

A multi-threaded runner thread is a Promptable
object, and implements the receive_prompt() method by collecting
prompted names and setting its threading event ‘is_prompted’.

A multi-threaded runner thread is a Python threading.Thread object,
and implements the thread’s run() method by waiting until the
‘is_prompted’ event has been set and then calling its process application’s
pull_and_process()
method once for each prompted name. It is expected that
the process application will have been set up by the runner
with a notification log reader from which event notifications
will be pulled.

	
__init__(app_class: Type[eventsourcing.system.Follower], is_stopping: threading.Event)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
run() → None[source]

	Begins by constructing an application instance from
given application class and then loops forever until
stopped. The loop blocks on waiting for the ‘is_prompted’
event to be set, then forwards the prompts already received
to its application by calling the application’s
pull_and_process() method for each prompted name.

	
receive_prompt(leader_name: str) → None[source]

	Receives prompt by appending name of
leader to list of prompted names.

	
class eventsourcing.system.NotificationLogReader(notification_log: eventsourcing.application.NotificationLog, section_size: int = 10)[source]

	Bases: object

Reads domain event notifications from a notification log.

	
__init__(notification_log: eventsourcing.application.NotificationLog, section_size: int = 10)[source]

	Initialises a reader with the given notification log,
and optionally a section size integer which determines
the requested number of domain event notifications in
each section retrieved from the notification log.

	
read(*, start: int) → Iterator[eventsourcing.persistence.Notification][source]

	Returns a generator that yields event notifications
from the reader’s notification log, starting from
given start position (a notification ID).

This method traverses the linked list of sections presented by
a notification log, and yields the individual event notifications
that are contained in each section. When all the event notifications
from a section have been yielded, the reader will retrieve the next
section, and continue yielding event notification until all subsequent
event notifications in the notification log from the start position
have been yielded.

	
select(*, start: int) → Iterator[eventsourcing.persistence.Notification][source]

	Returns a generator that yields event notifications
from the reader’s notification log, starting from
given start position (a notification ID).

This method selects a limited list of notifications from a
notification log and yields event notifications individually.
When all the event notifications in the list are yielded,
the reader will retrieve another list, and continue yielding
event notification until all subsequent event notifications
in the notification log from the start position have been
yielded.

interface — Interface

this page is under development — please check back soon

Classes

	
class eventsourcing.interface.NotificationLogInterface[source]

	Bases: abc.ABC

Abstract base class for obtaining serialised
sections of a notification log.

	
get_log_section(section_id: str) → str[source]

	Returns a serialised Section
from a notification log.

	
get_notifications(start: int, limit: int) → str[source]

	Returns a serialised list of Notification
objects from a notification log.

	
class eventsourcing.interface.NotificationLogJSONService(app: TApplication)[source]

	Bases: eventsourcing.interface.NotificationLogInterface, typing.Generic

Presents serialised sections of a notification log.

	
__init__(app: TApplication)[source]

	Initialises service with given application.

	
get_log_section(section_id: str) → str[source]

	Returns JSON serialised Section
from a notification log.

	
get_notifications(start: int, limit: int) → str[source]

	Returns a serialised list of Notification
objects from a notification log.

	
class eventsourcing.interface.NotificationLogJSONClient(interface: eventsourcing.interface.NotificationLogInterface)[source]

	Bases: eventsourcing.application.NotificationLog

Presents deserialized sections of a notification log.

	
__init__(interface: eventsourcing.interface.NotificationLogInterface)[source]

	Initialises log with a given interface.

	
__getitem__(section_id: str) → eventsourcing.application.Section[source]

	Returns a Section from a notification log.

	
select(start: int, limit: int) → List[eventsourcing.persistence.Notification][source]

	Returns a list of Notification objects.

Examples

This library contains a few example applications and systems.

this page is under development — please check back soon

import unittest

Bank accounts

Test first…

class TestBankAccounts(unittest.TestCase):
 def test(self) -> None:
 app = BankAccounts()

 # Check account not found error.
 with self.assertRaises(AccountNotFoundError):
 app.get_balance(uuid4())

 # Create an account.
 account_id1 = app.open_account(
 full_name="Alice",
 email_address="alice@example.com",
)

 # Check balance.
 self.assertEqual(app.get_balance(account_id1), Decimal("0.00"))

 # Deposit funds.
 app.deposit_funds(
 credit_account_id=account_id1,
 amount=Decimal("200.00"),
)

 # Check balance.
 self.assertEqual(app.get_balance(account_id1), Decimal("200.00"))

 # Withdraw funds.
 app.withdraw_funds(
 debit_account_id=account_id1,
 amount=Decimal("50.00"),
)

 # Check balance.
 self.assertEqual(app.get_balance(account_id1), Decimal("150.00"))

 # Fail to withdraw funds - insufficient funds.
 with self.assertRaises(InsufficientFundsError):
 app.withdraw_funds(
 debit_account_id=account_id1,
 amount=Decimal("151.00"),
)

 # Check balance - should be unchanged.
 self.assertEqual(app.get_balance(account_id1), Decimal("150.00"))

 # Create another account.
 account_id2 = app.open_account(
 full_name="Bob",
 email_address="bob@example.com",
)

 # Transfer funds.
 app.transfer_funds(
 debit_account_id=account_id1,
 credit_account_id=account_id2,
 amount=Decimal("100.00"),
)

 # Check balances.
 self.assertEqual(app.get_balance(account_id1), Decimal("50.00"))
 self.assertEqual(app.get_balance(account_id2), Decimal("100.00"))

 # Fail to transfer funds - insufficient funds.
 with self.assertRaises(InsufficientFundsError):
 app.transfer_funds(
 debit_account_id=account_id1,
 credit_account_id=account_id2,
 amount=Decimal("1000.00"),
)

 # Check balances - should be unchanged.
 self.assertEqual(app.get_balance(account_id1), Decimal("50.00"))
 self.assertEqual(app.get_balance(account_id2), Decimal("100.00"))

 # Close account.
 app.close_account(account_id1)

 # Fail to transfer funds - account closed.
 with self.assertRaises(AccountClosedError):
 app.transfer_funds(
 debit_account_id=account_id1,
 credit_account_id=account_id2,
 amount=Decimal("50.00"),
)

 # Fail to transfer funds - account closed.
 with self.assertRaises(AccountClosedError):
 app.transfer_funds(
 debit_account_id=account_id2,
 credit_account_id=account_id1,
 amount=Decimal("50.00"),
)

 # Fail to withdraw funds - account closed.
 with self.assertRaises(AccountClosedError):
 app.withdraw_funds(
 debit_account_id=account_id1,
 amount=Decimal("1.00"),
)

 # Fail to deposit funds - account closed.
 with self.assertRaises(AccountClosedError):
 app.deposit_funds(
 credit_account_id=account_id1,
 amount=Decimal("1000.00"),
)

 # Check balance - should be unchanged.
 self.assertEqual(app.get_balance(account_id1), Decimal("50.00"))

 # Check overdraft limit.
 self.assertEqual(
 app.get_overdraft_limit(account_id2),
 Decimal("0.00"),
)

 # Set overdraft limit.
 app.set_overdraft_limit(
 account_id=account_id2,
 overdraft_limit=Decimal("500.00"),
)

 # Can't set negative overdraft limit.
 with self.assertRaises(AssertionError):
 app.set_overdraft_limit(
 account_id=account_id2,
 overdraft_limit=Decimal("-500.00"),
)

 # Check overdraft limit.
 self.assertEqual(
 app.get_overdraft_limit(account_id2),
 Decimal("500.00"),
)

 # Withdraw funds.
 app.withdraw_funds(
 debit_account_id=account_id2,
 amount=Decimal("500.00"),
)

 # Check balance - should be overdrawn.
 self.assertEqual(
 app.get_balance(account_id2),
 Decimal("-400.00"),
)

 # Fail to withdraw funds - insufficient funds.
 with self.assertRaises(InsufficientFundsError):
 app.withdraw_funds(
 debit_account_id=account_id2,
 amount=Decimal("101.00"),
)

 # Fail to set overdraft limit - account closed.
 with self.assertRaises(AccountClosedError):
 app.set_overdraft_limit(
 account_id=account_id1,
 overdraft_limit=Decimal("500.00"),
)

The application class BankAccounts…

class BankAccounts(Application):
 def open_account(self, full_name: str, email_address: str) -> UUID:
 account = BankAccount.open(
 full_name=full_name,
 email_address=email_address,
)
 self.save(account)
 return account.id

 def get_account(self, account_id: UUID) -> BankAccount:
 try:
 aggregate = self.repository.get(account_id)
 except AggregateNotFound:
 raise AccountNotFoundError(account_id)
 else:
 assert isinstance(aggregate, BankAccount)
 return aggregate

 def get_balance(self, account_id: UUID) -> Decimal:
 account = self.get_account(account_id)
 return account.balance

 def deposit_funds(self, credit_account_id: UUID, amount: Decimal) -> None:
 account = self.get_account(credit_account_id)
 account.append_transaction(amount)
 self.save(account)

 def withdraw_funds(self, debit_account_id: UUID, amount: Decimal) -> None:
 account = self.get_account(debit_account_id)
 account.append_transaction(-amount)
 self.save(account)

 def transfer_funds(
 self,
 debit_account_id: UUID,
 credit_account_id: UUID,
 amount: Decimal,
) -> None:
 debit_account = self.get_account(debit_account_id)
 credit_account = self.get_account(credit_account_id)
 debit_account.append_transaction(-amount)
 credit_account.append_transaction(amount)
 self.save(debit_account, credit_account)

 def set_overdraft_limit(self, account_id: UUID, overdraft_limit: Decimal) -> None:
 account = self.get_account(account_id)
 account.set_overdraft_limit(overdraft_limit)
 self.save(account)

 def get_overdraft_limit(self, account_id: UUID) -> Decimal:
 account = self.get_account(account_id)
 return account.overdraft_limit

 def close_account(self, account_id: UUID) -> None:
 account = self.get_account(account_id)
 account.close()
 self.save(account)

class AccountNotFoundError(Exception):
 pass

The aggregate class BankAccount…

class BankAccount(Aggregate):
 def __init__(self, full_name: str, email_address: str):
 self.full_name = full_name
 self.email_address = email_address
 self.balance = Decimal("0.00")
 self.overdraft_limit = Decimal("0.00")
 self.is_closed = False

 @classmethod
 def open(cls, full_name: str, email_address: str) -> "BankAccount":
 return cls._create(
 cls.Opened,
 id=uuid4(),
 full_name=full_name,
 email_address=email_address,
)

 class Opened(AggregateCreated):
 full_name: str
 email_address: str

 def append_transaction(
 self, amount: Decimal, transaction_id: Optional[UUID] = None
) -> None:
 self.check_account_is_not_closed()
 self.check_has_sufficient_funds(amount)
 self.trigger_event(
 self.TransactionAppended,
 amount=amount,
 transaction_id=transaction_id,
)

 def check_account_is_not_closed(self) -> None:
 if self.is_closed:
 raise AccountClosedError({"account_id": self.id})

 def check_has_sufficient_funds(self, amount: Decimal) -> None:
 if self.balance + amount < -self.overdraft_limit:
 raise InsufficientFundsError({"account_id": self.id})

 class TransactionAppended(AggregateEvent):
 amount: Decimal
 transaction_id: UUID

 def apply(self, aggregate: "BankAccount") -> None:
 aggregate.balance += self.amount

 def set_overdraft_limit(self, overdraft_limit: Decimal) -> None:
 assert overdraft_limit > Decimal("0.00")
 self.check_account_is_not_closed()
 self.trigger_event(
 self.OverdraftLimitSet,
 overdraft_limit=overdraft_limit,
)

 class OverdraftLimitSet(AggregateEvent):
 overdraft_limit: Decimal

 def apply(self, aggregate: "BankAccount") -> None:
 aggregate.overdraft_limit = self.overdraft_limit

 def close(self) -> None:
 self.trigger_event(self.Closed)

 class Closed(AggregateEvent):
 def apply(self, aggregate: "BankAccount") -> None:
 aggregate.is_closed = True

class TransactionError(Exception):
 pass

class AccountClosedError(TransactionError):
 pass

class InsufficientFundsError(TransactionError):
 pass

Run the test…

suite = unittest.TestSuite()
suite.addTest(TestBankAccounts("test"))

runner = unittest.TextTestRunner()
result = runner.run(suite)

assert result.wasSuccessful()

Cargo shipping

Test first…

class TestBookingService(unittest.TestCase):
 def setUp(self) -> None:
 self.service = BookingService(BookingApplication())

 def test_admin_can_book_new_cargo(self) -> None:
 arrival_deadline = datetime.now(tz=TZINFO) + timedelta(weeks=3)

 cargo_id = self.service.book_new_cargo(
 origin="NLRTM",
 destination="USDAL",
 arrival_deadline=arrival_deadline,
)

 cargo_details = self.service.get_cargo_details(cargo_id)
 self.assertTrue(cargo_details["id"])
 self.assertEqual(cargo_details["origin"], "NLRTM")
 self.assertEqual(cargo_details["destination"], "USDAL")

 self.service.change_destination(cargo_id, destination="AUMEL")
 cargo_details = self.service.get_cargo_details(cargo_id)
 self.assertEqual(cargo_details["destination"], "AUMEL")
 self.assertEqual(
 cargo_details["arrival_deadline"],
 arrival_deadline,
)

 def test_scenario_cargo_from_hongkong_to_stockholm(
 self,
) -> None:
 # Test setup: A cargo should be shipped from
 # Hongkong to Stockholm, and it should arrive
 # in no more than two weeks.
 origin = "HONGKONG"
 destination = "STOCKHOLM"
 arrival_deadline = datetime.now(tz=TZINFO) + timedelta(weeks=2)

 # Use case 1: booking.

 # A new cargo is booked, and the unique tracking
 # id is assigned to the cargo.
 tracking_id = self.service.book_new_cargo(origin, destination, arrival_deadline)

 # The tracking id can be used to lookup the cargo
 # in the repository.
 # Important: The cargo, and thus the domain model,
 # is responsible for determining the status of the
 # cargo, whether it is on the right track or not
 # and so on. This is core domain logic. Tracking
 # the cargo basically amounts to presenting
 # information extracted from the cargo aggregate
 # in a suitable way.
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(
 cargo_details["transport_status"],
 "NOT_RECEIVED",
)
 self.assertEqual(cargo_details["routing_status"], "NOT_ROUTED")
 self.assertEqual(cargo_details["is_misdirected"], False)
 self.assertEqual(
 cargo_details["estimated_time_of_arrival"],
 None,
)
 self.assertEqual(cargo_details["next_expected_activity"], None)

 # Use case 2: routing.
 #
 # A number of possible routes for this cargo is
 # requested and may be presented to the customer
 # in some way for him/her to choose from.
 # Selection could be affected by things like price
 # and time of delivery, but this test simply uses
 # an arbitrary selection to mimic that process.
 routes_details = self.service.request_possible_routes_for_cargo(tracking_id)
 route_details = select_preferred_itinerary(routes_details)

 # The cargo is then assigned to the selected
 # route, described by an itinerary.
 self.service.assign_route(tracking_id, route_details)

 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(
 cargo_details["transport_status"],
 "NOT_RECEIVED",
)
 self.assertEqual(cargo_details["routing_status"], "ROUTED")
 self.assertEqual(cargo_details["is_misdirected"], False)
 self.assertTrue(cargo_details["estimated_time_of_arrival"])
 self.assertEqual(
 cargo_details["next_expected_activity"],
 ("RECEIVE", "HONGKONG"),
)

 # Use case 3: handling

 # A handling event registration attempt will be
 # formed from parsing the data coming in as a
 # handling report either via the web service
 # interface or as an uploaded CSV file. The
 # handling event factory tries to create a
 # HandlingEvent from the attempt, and if the
 # factory decides that this is a plausible
 # handling event, it is stored. If the attempt
 # is invalid, for example if no cargo exists for
 # the specified tracking id, the attempt is
 # rejected.
 #
 # Handling begins: cargo is received in Hongkong.
 self.service.register_handling_event(tracking_id, None, "HONGKONG", "RECEIVE")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["transport_status"], "IN_PORT")
 self.assertEqual(
 cargo_details["last_known_location"],
 "HONGKONG",
)
 self.assertEqual(
 cargo_details["next_expected_activity"],
 ("LOAD", "HONGKONG", "V1"),
)

 # Load onto voyage V1.
 self.service.register_handling_event(tracking_id, "V1", "HONGKONG", "LOAD")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["current_voyage_number"], "V1")
 self.assertEqual(
 cargo_details["last_known_location"],
 "HONGKONG",
)
 self.assertEqual(
 cargo_details["transport_status"],
 "ONBOARD_CARRIER",
)
 self.assertEqual(
 cargo_details["next_expected_activity"],
 ("UNLOAD", "NEWYORK", "V1"),
)

 # Incorrectly unload in Tokyo.
 self.service.register_handling_event(tracking_id, "V1", "TOKYO", "UNLOAD")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["current_voyage_number"], None)
 self.assertEqual(cargo_details["last_known_location"], "TOKYO")
 self.assertEqual(cargo_details["transport_status"], "IN_PORT")
 self.assertEqual(cargo_details["is_misdirected"], True)
 self.assertEqual(cargo_details["next_expected_activity"], None)

 # Reroute.
 routes_details = self.service.request_possible_routes_for_cargo(tracking_id)
 route_details = select_preferred_itinerary(routes_details)
 self.service.assign_route(tracking_id, route_details)

 # Load in Tokyo.
 self.service.register_handling_event(tracking_id, "V3", "TOKYO", "LOAD")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["current_voyage_number"], "V3")
 self.assertEqual(cargo_details["last_known_location"], "TOKYO")
 self.assertEqual(
 cargo_details["transport_status"],
 "ONBOARD_CARRIER",
)
 self.assertEqual(cargo_details["is_misdirected"], False)
 self.assertEqual(
 cargo_details["next_expected_activity"],
 ("UNLOAD", "HAMBURG", "V3"),
)

 # Unload in Hamburg.
 self.service.register_handling_event(tracking_id, "V3", "HAMBURG", "UNLOAD")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["current_voyage_number"], None)
 self.assertEqual(cargo_details["last_known_location"], "HAMBURG")
 self.assertEqual(cargo_details["transport_status"], "IN_PORT")
 self.assertEqual(cargo_details["is_misdirected"], False)
 self.assertEqual(
 cargo_details["next_expected_activity"],
 ("LOAD", "HAMBURG", "V4"),
)

 # Load in Hamburg
 self.service.register_handling_event(tracking_id, "V4", "HAMBURG", "LOAD")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["current_voyage_number"], "V4")
 self.assertEqual(cargo_details["last_known_location"], "HAMBURG")
 self.assertEqual(
 cargo_details["transport_status"],
 "ONBOARD_CARRIER",
)
 self.assertEqual(cargo_details["is_misdirected"], False)
 self.assertEqual(
 cargo_details["next_expected_activity"],
 ("UNLOAD", "STOCKHOLM", "V4"),
)

 # Unload in Stockholm
 self.service.register_handling_event(tracking_id, "V4", "STOCKHOLM", "UNLOAD")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["current_voyage_number"], None)
 self.assertEqual(
 cargo_details["last_known_location"],
 "STOCKHOLM",
)
 self.assertEqual(cargo_details["transport_status"], "IN_PORT")
 self.assertEqual(cargo_details["is_misdirected"], False)
 self.assertEqual(
 cargo_details["next_expected_activity"],
 ("CLAIM", "STOCKHOLM"),
)

 # Finally, cargo is claimed in Stockholm.
 self.service.register_handling_event(tracking_id, None, "STOCKHOLM", "CLAIM")
 cargo_details = self.service.get_cargo_details(tracking_id)
 self.assertEqual(cargo_details["current_voyage_number"], None)
 self.assertEqual(
 cargo_details["last_known_location"],
 "STOCKHOLM",
)
 self.assertEqual(cargo_details["transport_status"], "CLAIMED")
 self.assertEqual(cargo_details["is_misdirected"], False)
 self.assertEqual(cargo_details["next_expected_activity"], None)

Interface…

class BookingService(object):
 """
 Presents an application interface that uses
 simple types of object (str, bool, datetime).
 """

 def __init__(self, app: BookingApplication):
 self.app = app

 def book_new_cargo(
 self,
 origin: str,
 destination: str,
 arrival_deadline: datetime,
) -> str:
 tracking_id = self.app.book_new_cargo(
 Location[origin],
 Location[destination],
 arrival_deadline,
)
 return str(tracking_id)

 def get_cargo_details(self, tracking_id: str) -> CargoDetails:
 cargo = self.app.get_cargo(UUID(tracking_id))

 # Present 'next_expected_activity'.
 next_expected_activity: Optional[Union[Tuple[Any, Any], Tuple[Any, Any, Any]]]
 if cargo.next_expected_activity is None:
 next_expected_activity = None
 elif len(cargo.next_expected_activity) == 2:
 next_expected_activity = (
 cargo.next_expected_activity[0].value,
 cargo.next_expected_activity[1].value,
)
 elif len(cargo.next_expected_activity) == 3:
 next_expected_activity = (
 cargo.next_expected_activity[0].value,
 cargo.next_expected_activity[1].value,
 cargo.next_expected_activity[2],
)
 else:
 raise Exception(
 "Invalid next expected activity: {}".format(
 cargo.next_expected_activity
)
)

 # Present 'last_known_location'.
 if cargo.last_known_location is None:
 last_known_location = None
 else:
 last_known_location = cargo.last_known_location.value

 # Present the cargo details.
 return {
 "id": str(cargo.id),
 "origin": cargo.origin.value,
 "destination": cargo.destination.value,
 "arrival_deadline": cargo.arrival_deadline,
 "transport_status": cargo.transport_status,
 "routing_status": cargo.routing_status,
 "is_misdirected": cargo.is_misdirected,
 "estimated_time_of_arrival": cargo.estimated_time_of_arrival,
 "next_expected_activity": next_expected_activity,
 "last_known_location": last_known_location,
 "current_voyage_number": cargo.current_voyage_number,
 }

 def change_destination(self, tracking_id: str, destination: str) -> None:
 self.app.change_destination(UUID(tracking_id), Location[destination])

 def request_possible_routes_for_cargo(self, tracking_id: str) -> List[dict]:
 routes = self.app.request_possible_routes_for_cargo(UUID(tracking_id))
 return [self.dict_from_itinerary(route) for route in routes]

 def dict_from_itinerary(self, itinerary: Itinerary) -> ItineraryDetails:
 legs_details = []
 for leg in itinerary.legs:
 leg_details: LegDetails = {
 "origin": leg.origin,
 "destination": leg.destination,
 "voyage_number": leg.voyage_number,
 }
 legs_details.append(leg_details)
 route_details: ItineraryDetails = {
 "origin": itinerary.origin,
 "destination": itinerary.destination,
 "legs": legs_details,
 }
 return route_details

 def assign_route(
 self,
 tracking_id: str,
 route_details: ItineraryDetails,
) -> None:
 routes = self.app.request_possible_routes_for_cargo(UUID(tracking_id))
 for route in routes:
 if route_details == self.dict_from_itinerary(route):
 self.app.assign_route(UUID(tracking_id), route)

 def register_handling_event(
 self,
 tracking_id: str,
 voyage_number: Optional[str],
 location: str,
 handling_activity: str,
) -> None:
 self.app.register_handling_event(
 UUID(tracking_id),
 voyage_number,
 Location[location],
 HandlingActivity[handling_activity],
)

def select_preferred_itinerary(
 itineraries: List[ItineraryDetails],
) -> ItineraryDetails:
 return itineraries[0]

Application…

class BookingApplication(Application):
 def register_transcodings(self, transcoder: Transcoder) -> None:
 super(BookingApplication, self).register_transcodings(transcoder)
 transcoder.register(LocationAsName())
 transcoder.register(HandlingActivityAsName())
 transcoder.register(ItineraryAsDict())
 transcoder.register(LegAsDict())

 def book_new_cargo(
 self,
 origin: Location,
 destination: Location,
 arrival_deadline: datetime,
) -> UUID:
 cargo = Cargo.new_booking(origin, destination, arrival_deadline)
 self.save(cargo)
 return cargo.id

 def change_destination(self, tracking_id: UUID, destination: Location) -> None:
 cargo = self.get_cargo(tracking_id)
 cargo.change_destination(destination)
 self.save(cargo)

 def request_possible_routes_for_cargo(self, tracking_id: UUID) -> List[Itinerary]:
 cargo = self.get_cargo(tracking_id)
 from_location = (cargo.last_known_location or cargo.origin).value
 to_location = cargo.destination.value
 try:
 possible_routes = REGISTERED_ROUTES[(from_location, to_location)]
 except KeyError:
 raise Exception(
 "Can't find routes from {} to {}".format(from_location, to_location)
)

 return possible_routes

 def assign_route(self, tracking_id: UUID, itinerary: Itinerary) -> None:
 cargo = self.get_cargo(tracking_id)
 cargo.assign_route(itinerary)
 self.save(cargo)

 def register_handling_event(
 self,
 tracking_id: UUID,
 voyage_number: Optional[str],
 location: Location,
 handing_activity: HandlingActivity,
) -> None:
 cargo = self.get_cargo(tracking_id)
 cargo.register_handling_event(
 tracking_id,
 voyage_number,
 location,
 handing_activity,
)
 self.save(cargo)

 def get_cargo(self, tracking_id: UUID) -> Cargo:
 cargo = self.repository.get(tracking_id)
 assert isinstance(cargo, Cargo)
 return cargo

class HandlingActivityAsName(Transcoding):
 type = HandlingActivity
 name = "handling_activity"

 def encode(self, obj: HandlingActivity) -> str:
 return obj.name

 def decode(self, data: str) -> HandlingActivity:
 assert isinstance(data, str)
 return HandlingActivity[data]

class ItineraryAsDict(Transcoding):
 type = Itinerary
 name = "itinerary"

 def encode(self, obj: Itinerary) -> dict:
 return obj.__dict__

 def decode(self, data: dict) -> Itinerary:
 assert isinstance(data, dict)
 return Itinerary(**data)

class LegAsDict(Transcoding):
 type = Leg
 name = "leg"

 def encode(self, obj: Leg) -> dict:
 return obj.__dict__

 def decode(self, data: dict) -> Leg:
 assert isinstance(data, dict)
 return Leg(**data)

class LocationAsName(Transcoding):
 type = Location
 name = "location"

 def encode(self, obj: Location) -> str:
 return obj.name

 def decode(self, data: str) -> Location:
 assert isinstance(data, str)
 return Location[data]

Domain model…

class Cargo(Aggregate):
 """
 The Cargo aggregate is an event-sourced domain model aggregate that
 specifies the routing from origin to destination, and can track what
 happens to the cargo after it has been booked.
 """

 def __init__(
 self,
 origin: Location,
 destination: Location,
 arrival_deadline: datetime,
):
 self._origin: Location = origin
 self._destination: Location = destination
 self._arrival_deadline: datetime = arrival_deadline
 self._transport_status: str = "NOT_RECEIVED"
 self._routing_status: str = "NOT_ROUTED"
 self._is_misdirected: bool = False
 self._estimated_time_of_arrival: Optional[datetime] = None
 self._next_expected_activity: NextExpectedActivity = None
 self._route: Optional[Itinerary] = None
 self._last_known_location: Optional[Location] = None
 self._current_voyage_number: Optional[str] = None

 @property
 def origin(self) -> Location:
 return self._origin

 @property
 def destination(self) -> Location:
 return self._destination

 @property
 def arrival_deadline(self) -> datetime:
 return self._arrival_deadline

 @property
 def transport_status(self) -> str:
 return self._transport_status

 @property
 def routing_status(self) -> str:
 return self._routing_status

 @property
 def is_misdirected(self) -> bool:
 return self._is_misdirected

 @property
 def estimated_time_of_arrival(
 self,
) -> Optional[datetime]:
 return self._estimated_time_of_arrival

 @property
 def next_expected_activity(self) -> Optional[Tuple]:
 return self._next_expected_activity

 @property
 def route(self) -> Optional[Itinerary]:
 return self._route

 @property
 def last_known_location(self) -> Optional[Location]:
 return self._last_known_location

 @property
 def current_voyage_number(self) -> Optional[str]:
 return self._current_voyage_number

 @classmethod
 def new_booking(
 cls,
 origin: Location,
 destination: Location,
 arrival_deadline: datetime,
) -> "Cargo":
 return cls._create(
 event_class=Cargo.BookingStarted,
 id=uuid4(),
 origin=origin,
 destination=destination,
 arrival_deadline=arrival_deadline,
)

 class BookingStarted(AggregateCreated):
 origin: Location
 destination: Location
 arrival_deadline: datetime

 class Event(AggregateEvent["Cargo"]):
 def apply(self, aggregate: "Cargo") -> None:
 aggregate.apply(self)

 @singledispatchmethod
 def apply(self, event: "Cargo.Event") -> None:
 """
 Default aggregate projection.
 """

 def change_destination(self, destination: Location) -> None:
 self.trigger_event(
 self.DestinationChanged,
 destination=destination,
)

 class DestinationChanged(Event):
 destination: Location

 @apply.register(DestinationChanged)
 def destination_changed(self, event: DestinationChanged) -> None:
 self._destination = event.destination

 def assign_route(self, itinerary: Itinerary) -> None:
 self.trigger_event(self.RouteAssigned, route=itinerary)

 class RouteAssigned(Event):
 route: Itinerary

 @apply.register(RouteAssigned)
 def route_assigned(self, event: RouteAssigned) -> None:
 self._route = event.route
 self._routing_status = "ROUTED"
 self._estimated_time_of_arrival = datetime.now(tz=TZINFO) + timedelta(weeks=1)
 self._next_expected_activity = (
 HandlingActivity.RECEIVE,
 self.origin,
)
 self._is_misdirected = False

 def register_handling_event(
 self,
 tracking_id: UUID,
 voyage_number: Optional[str],
 location: Location,
 handling_activity: HandlingActivity,
) -> None:
 self.trigger_event(
 self.HandlingEventRegistered,
 tracking_id=tracking_id,
 voyage_number=voyage_number,
 location=location,
 handling_activity=handling_activity,
)

 class HandlingEventRegistered(Event):
 tracking_id: UUID
 voyage_number: str
 location: Location
 handling_activity: str

 @apply.register(HandlingEventRegistered)
 def handling_event_registered(self, event: HandlingEventRegistered) -> None:
 assert self.route is not None
 if event.handling_activity == HandlingActivity.RECEIVE:
 self._transport_status = "IN_PORT"
 self._last_known_location = event.location
 self._next_expected_activity = (
 HandlingActivity.LOAD,
 event.location,
 self.route.legs[0].voyage_number,
)
 elif event.handling_activity == HandlingActivity.LOAD:
 self._transport_status = "ONBOARD_CARRIER"
 self._current_voyage_number = event.voyage_number
 for leg in self.route.legs:
 if leg.origin == event.location.value:
 if leg.voyage_number == event.voyage_number:
 self._next_expected_activity = (
 HandlingActivity.UNLOAD,
 Location[leg.destination],
 event.voyage_number,
)
 break
 else:
 raise Exception(
 "Can't find leg with origin={} and "
 "voyage_number={}".format(
 event.location,
 event.voyage_number,
)
)

 elif event.handling_activity == HandlingActivity.UNLOAD:
 self._current_voyage_number = None
 self._last_known_location = event.location
 self._transport_status = "IN_PORT"
 if event.location == self.destination:
 self._next_expected_activity = (
 HandlingActivity.CLAIM,
 event.location,
)
 elif event.location.value in [leg.destination for leg in self.route.legs]:
 for i, leg in enumerate(self.route.legs):
 if leg.voyage_number == event.voyage_number:
 next_leg: Leg = self.route.legs[i + 1]
 assert Location[next_leg.origin] == event.location
 self._next_expected_activity = (
 HandlingActivity.LOAD,
 event.location,
 next_leg.voyage_number,
)
 break
 else:
 self._is_misdirected = True
 self._next_expected_activity = None

 elif event.handling_activity == HandlingActivity.CLAIM:
 self._next_expected_activity = None
 self._transport_status = "CLAIMED"

 else:
 raise Exception(
 "Unsupported handling event: {}".format(event.handling_activity)
)

class HandlingActivity(Enum):
 RECEIVE = "RECEIVE"
 LOAD = "LOAD"
 UNLOAD = "UNLOAD"
 CLAIM = "CLAIM"

class Itinerary(object):
 """
 An itinerary along which cargo is shipped.
 """

 def __init__(
 self,
 origin: str,
 destination: str,
 legs: Tuple[Leg, ...],
):
 self.origin = origin
 self.destination = destination
 self.legs = legs

class Leg(object):
 """
 Leg of an itinerary.
 """

 def __init__(
 self,
 origin: str,
 destination: str,
 voyage_number: str,
):
 self.origin: str = origin
 self.destination: str = destination
 self.voyage_number: str = voyage_number

class Location(Enum):
 """
 Locations in the world.
 """

 HAMBURG = "HAMBURG"
 HONGKONG = "HONGKONG"
 NEWYORK = "NEWYORK"
 STOCKHOLM = "STOCKHOLM"
 TOKYO = "TOKYO"

 NLRTM = "NLRTM"
 USDAL = "USDAL"
 AUMEL = "AUMEL"

Run the test…

suite = unittest.TestSuite()
suite.addTest(TestBookingService("test_admin_can_book_new_cargo"))
suite.addTest(TestBookingService("test_scenario_cargo_from_hongkong_to_stockholm"))

runner = unittest.TextTestRunner()
result = runner.run(suite)

assert result.wasSuccessful()

Release notes

It is the aim of the project that releases with the same major version
number are backwards compatible, within the scope of the documented
examples. New major versions indicate backwards incompatible changes
have been introduced since the previous major version. New minor
version indicate new functionality has been added, or existing functionality
extended. New point version indicates existing code or documentation
has been improved in a way that neither breaks backwards compatibility
nor extends the functionality of the library.

Version 9.x

Version 9.x series is a rewrite of the library that distills most of
the best parts of the previous versions of the library into faster
and simpler code. This version is recommended for new projects.
It is not backwards-compatible with previous major versions. However
the underlying principles are the same, and so conversion of
code and stored events is very possible.

Version 9.1.3 (released 8 October 2021)

Added “trove classifier” for Python 3.10.

Version 9.1.2 (released 1 October 2021)

Clarified Postgres configuration options (POSTGRES_LOCK_TIMEOUT and
POSTGRES_IDLE_IN_TRANSACTION_SESSION_TIMEOUT) require integer seconds.
Added py.typed file (was missing since v9).

Version 9.1.1 (released 20 August 2021)

Changed PostgreSQL schema to use BIGSERIAL (was SERIAL) for notification IDs.

Version 9.1.0 (released 18 August 2021)

Added support for setting environment when constructing application.
Added “eq” and “repr” methods on aggregate base class.
Reinstated explicit definition of Aggregate.Created class.
Added Invoice example, and Parking Lot example.
Fixed bug when decorating property setter (use method argument name).
Improved type annotations.
Adjusted order of calling domain event mutate() and apply() methods,
so apply() method is called first, in case exceptions are raised by
apply() method so that the aggregate object can emerge unscathed
whereas previously its version number and modified time would always
be changed. Improved robustness of recorder classes, with more attention
to connection state, closing connections on certain errors, retrying
operations under certain conditions, and especially by changing the
postgres recorders to obtain ‘EXCLUSIVE’ mode table lock when inserting
events. Obtaining the table lock in PostgreSQL avoids interleaving of
inserts between commits, which avoids event notifications from being
committed with lower notification IDs than event notifications that
have already been committed, and thereby prevents readers who are
tailing the notification log of an application from missing event
notifications for this reason. Added various environment variable
options: for sqlite a lock timeout option; and for postgres a max
connection age option which allows connections over a certain age
to be closed when idle, a connection pre-ping option, a lock timeout
option, and an option to timeout sessions idle in transaction so
that locks can be released even if the database client has somehow
ceased to continue its interactions with the server in a way that
leave the session open. Improved the exception classes, to follow
the standard Python DBAPI class names, and to encapsulate errors
from drivers with library errors following this standard. Added
methods to notification log and reader classes to allow notifications
to be selected directly. Changed Follower class to select()
rather than read() notifications. Supported defining initial version
number of aggregates on aggregate class (with INITIAL_VERSION attribute).

Version 9.0.3 (released 17 May 2021)

Changed PostgreSQL queries to use transaction class context manager
(transactions were started and not closed). Added possibility to
specify a port for Postgres (thanks to Valentin Dion). Added **kwargs
to Application.save() method signature, so other things can be
passed down the stack. Fixed reference in installing.rst (thanks to
Karl Heinrichmeyer). Made properties out of aggregate attributes:
‘modified_on’ and ‘version’. Improved documentation.

Version 9.0.2 (released 16 April 2021)

Fixed issue with type hints in PyCharm v2021.1 for methods decorated with the @event decorator.

Version 9.0.1 (released 29 March 2021)

Improved documentation. Moved cipher base class to avoid importing cipher module.

Version 9.0.0 (released 13 March 2021)

First release of the distilled version of the library. Compared with
previous versions, the code and documentation are much simpler. This
version focuses directly on expressing the important concerns, without
the variations and alternatives that had been accumulated over the past
few years of learning and pathfinding.

The highlight is the new declarative syntax
for event sourced domain models.

Dedicated persistence modules for SQLite and PostgresSQL have been
introduced. Support for SQLAlchemy and Django, and other databases,
has been removed. The plan is to support these in separate package
distributions. The default “plain old Python object” infrastructure
continues to exist, and now offers event storage and retrieval
performance of around 20x the speed of using PostgreSQL and around
4x the speed of using SQLite in memory.

The event storage format is more efficient, because originator IDs and
originator versions are removed from the stored event state before
serialisation, and then reinstated on serialisation.

Rather than the using “INSERT SELECT MAX” SQL statements, database
sequences are used to generate event notifications. This avoids table
conflicts that sometimes caused exceptions and required retries when
storing events. Although this leads to notification ID sequences that
may have gaps, the use of sequences means there is still no risk of
event notifications being inserted in the gaps after later event
notifications have been processed, which was the motivation for using
gapless sequences in previous versions. The notification log and log
reader classes have been adjusted to support the possible existence of
gaps in the notification log sequence.

The transcoder is more easily extensible, with the new style for defining
and registering individual transcoding objects to support individual types
of object that are not supported by default.

Domain event classes have been greatly simplified, with the deep hierarchy
of entity and event classes removed in favour of the simple aggregate base
class.

The repository class has been changed to provide a single get() method. It no
longer supports the Python “indexing” square-bracket syntax, so that there is
just one way to get an aggregate regardless of whether the requested version
is specified or not.

Application configuration of persistence infrastructure is now driven by
environment variables rather than constructor parameters, leading to a
simpler interface for application object classes. The mechanism for storing
aggregates has been simplified, so that aggregates are saved using the
application “save” method. A new “notify” method has been added to the
application class, to support applications that need to know when new
events have just been recorded.

The mechanism by which aggregates published their events and a
“persistence subscriber” subscribed and persisted published domain events
has been completely removed, since aggregates that are saved always need
some persistence infrastructure to store the events, and it is the
responsibility of the application to bring together the domain model and
infrastructure, so that when an aggregate can be saved there is always
an application.

Process application policy methods are now given a process event object
and will use it to collect domain events, using its “save” method, which
has the same method signature as the application “save” method. This
allows policies to accumulate new events on the process event object
in the order they were generated, whereas previously if new events
were generated on one aggregate and then a second and then the first,
the events of one aggregate would be stored first and the events of
the second aggregate would be stored afterwards, leading to an incorrect
ordering of the domain events in the notification log. The process
event object existed in previous versions, was used to keep track
of the position in a notification log of the event notification
that was being processed by a policy, and continues to be used
for that purpose.

The system runners have been reduced to the single-threaded and
multi-threaded runners, with support for running with Ray and gRPC
and so on removed (the plan being to support these in separate package
distributions).

Altogether, these changes mean the core library now depends only on
the PythonStandard Library, except for the optional extra dependencies
on a cryptographic library (PyCryptodome) and a PostgresSQL driver (psycopg2),
and the dependencies of development tools. Altogether, these changes make the
test suite much faster to run (several seconds rather than several minutes for
the previous version). These changes make the build time on CI services much
quicker (around one minute, rather than nearly ten minutes for the previous
version). And these changes make the library more approachable and fun for
users and library developers. Test coverage has been increased to 100% line
and branch coverage. Also mypy and flake8 checking is done.

The documentation has been rewritten to focus more on usage of the library code,
and less on explaining surrounding concepts and considerations.

Version 8.x

Version 8.x series brings more efficient storage, static type hinting,
improved transcoding, event and entity versioning, and integration with
Axon Server (specialist event store) and Ray. Code for defining and running
systems of application, previously in the “application” package, has been
moved to a new “system” package.

Version 8.3.0 (released 9 January 2021)

Added gRPC runner. Improved Django record manager, so that it supports
setting notification log IDs in the application like the SQLAlchemy
record manager (this optionally avoids use of the “insert select max”
statement and thereby makes it possible to exclude domain events from
the notification log at the risk of non-gapless notification log
sequences). Also improved documentation.

Version 8.2.5 (released 22 Dec 2020)

Increased versions of dependencies on requests, Django, Celery, PyMySQL.

Version 8.2.4 (released 12 Nov 2020)

Fixed issue with using Oracle database, where a trailing semicolon
in an SQL statement caused the “invalid character” error (ORA-00911).

Version 8.2.3 (released 19 May 2020)

Improved interactions with process applications in RayRunner
so that they have the same style as interactions with process
applications in other runners. This makes the RayRunner more
interchangeable with the other runners, so that system client
code can be written to work with any runner.

Version 8.2.2 (released 16 May 2020)

Improved documentation. Updated dockerization for local
development. Added Makefile, to setup development environment,
to build and run docker containers, to run the test suite, to
format the code, and to build the docs. Reformatted the code.

Version 8.2.1 (released 11 March 2020)

Improved documentation.

Version 8.2.0 (released 10 March 2020)

Added optional versioning of domain events and entities, so that
domain events and entity snapshots can be versioned and old
versions of state can be upcast to new versions.

Added optional correlation and causation IDs for domain events,
so that a story can be traced through a system of applications.

Added AxonApplication and AxonRecordManager so that Axon Server can
be used as an event store by event-sourced applications.

Added RayRunner, which allows a system of applications to be run with
the Ray framework.

Version 8.1.0 (released 11 January 2020)

Improved documentation. Improved transcoding (e.g. tuples
are encoded as tuples also within other collections). Added
event hash method name to event attributes, so that event hashes
created with old version of event hashing can still be checked.
Simplified repository base classes (removed “event player” class).

Version 8.0.0 (released 7 December 2019)

The storage of event state has been changed from strings to bytes. This
is definitely a backwards incompatible change. Previously state bytes were
encoded with base64 before being saved as strings, which adds 33% to the size
of each stored state. Compression of event state is now an option, independently
of encryption, and compression is now configurable (defaults to zlib module,
other compressors can be used). Attention will need to be paid to one of two
alternatives. One alternative is to migrate your stored events (the state field),
either from being stored as plaintext strings to being stored as plaintext bytes
(you need to encode as utf-8), or from being stored as ciphertext bytes encoded
with base64 decoded as utf-8 to being stored as ciphertext bytes (you need to
encode as utf-8 and decode base64). The other alternative is to carry on using
the same database schema, define custom stored event record classes in your project
(copied from the previous version of the library), and extend the record manager
to convert the bytes to strings and back. A later version of this library may
bring support for one or both of these options, so if this change presents a
challenge, please hold off from upgrading, and discuss your situation with the
project developer(s). There is nothing wrong with the previous version, and you
can continue to use it.

Other backwards incompatible changes involve renaming a number of methods, and
moving classes and also modules (for example, the system modules have been moved
from the applications package to a separate package). Please see the commit log
for all the details.

This version also brings improved and expanded transcoding, additional type
annotations, automatic subclassing on domain entities of domain events (not
enabled by default), an option to apply the policy of a process application
to all events that are generated by its policy when an event notification
is processed (continues until all successively generated events have been
processed, with all generated events stored in the same atomic process event,
as if all generated events were generated in a single policy function).

Please note, the transcoding now supports the encoding of tuples, and named tuples,
as tuples. Previously tuples were encoded by the JSON transcoding as
lists, and so tuples became lists, which is the default behaviour on the core
json package. So if you have code that depends on the transcoder converting
tuples to lists, then attention will have to paid to the fact that tuples will
now be encoded and returned as tuples. However, any existing stored events generated
with an earlier version of this library will continue to be returned as lists,
since they were encoded as lists not tuples.

Please note, the system runner class was changed to keep references to
constructed process application classes in the runner object, rather than the
system object. If you have code that accesses the process applications
as attributes on the system object, then attention will need to be paid to
accessing the process applications by class on the runner object.

Version 7.x

Version 7.x series refined the “process and system” code.

Version 7.2.4 (released 9 Oct 2019)

Version 7.2.4 fixed an issue in running the test suite.

Version 7.2.3 (released 9 Oct 2019)

Version 7.2.3 fixed a bug in MultiThreadedRunner.

Version 7.2.2 (released 6 Oct 2019)

Version 7.2.2 has improved documentation for “reliable projections”.

Version 7.2.1 (released 6 Oct 2019)

Version 7.2.1 has improved support for “reliable projections”,
which allows custom records to be deleted (previously only
create and update was supported). The documentation for
“reliable projections” was improved. The previous code
snippet, which was merely suggestive, was replaced by a
working example.

Version 7.2.0 (released 1 Oct 2019)

Version 7.2.0 has support for “reliable projections” into custom
ORM objects that can be coded as process application policies.

Also a few issues were resolved: avoiding importing Django models from library
when custom models are being used to store events prevents model conflicts;
fixed multiprocess runner to work when an application is not being followed
by another; process applications now reflect off the sequenced item tuple when
reading notifications so that custom field names are used.

Version 7.1.6 (released 2 Aug 2019)

Version 7.1.6 fixed an issue with the notification log reader. The notification
log reader was sometimes using a “fast path” to get all the notifications without
paging through the notification log using the linked sections. However, when there
were too many notification, this failed to work. A few adjustments were made
to fix the performance and robustness and configurability of the notification
log reading functionality.

Version 7.1.5 (released 26 Jul 2019)

Version 7.1.5 improved the library documentation with better links to
module reference pages. The versions of dependencies were also updated,
so that all versions of dependencies are the current stable versions
of the package distributions on PyPI. In particular, requests was
updated to a version that fixes a security vulnerability.

Version 7.1.4 (released 10 Jul 2019)

Version 7.1.4 improved the library documentation.

Version 7.1.3 (released 4 Jul 2019)

Version 7.1.3 improved the domain model layer documentation.

Version 7.1.2 (released 26 Jun 2019)

Version 7.1.2 fixed method ‘construct_app()’ on class ‘System’ to set ‘setup_table’
on its process applications using the system’s value of ‘setup_tables’. Also
updated version of dependency of SQLAlchemy-Utils.

Version 7.1.1 (released 21 Jun 2019)

Version 7.1.1 added ‘Support options’ and ‘Contributing’ sections to the documentation.

Version 7.1.0 (released 11 Jun 2019)

Version 7.1.0 improved structure to the documentation.

Version 7.0.0 (released 21 Feb 2019)

Version 7.0.0 brought many incremental improvements across the library,
especially the ability to define an entire system of process applications
independently of infrastructure. Please note, records fields have been renamed.

Version 6.x

Version 6.x series was the first release of the “process and system” code.

Version 6.2.0 (released 15 Jul 2018)

Version 6.2.0 (released 26 Jun 2018)

Version 6.1.0 (released 14 Jun 2018)

Version 6.0.0 (released 23 Apr 2018)

Version 5.x

Version 5.x added support for Django ORM. It was released
as a new major version after quite a lot of refactoring made
things backward-incompatible.

Version 5.1.1 (released 4 Apr 2018)

Version 5.1.0 (released 16 Feb 2018)

Version 5.0.0 (released 24 Jan 2018)

Support for Django ORM was added in version 5.0.0.

Version 4.x

Version 4.x series was released after quite a lot of refactoring made
things backward-incompatible. Object namespaces for entity and event
classes was cleaned up, by moving library names to double-underscore
prefixed and postfixed names. Domain events can be hashed, and also
hash-chained together, allowing entity state to be verified.
Created events were changed to have originator_topic, which allowed
other things such as mutators and repositories to be greatly
simplified. Mutators are now by default expected to be implemented
on entity event classes. Event timestamps were changed from floats
to decimal objects, an exact number type. Cipher was changed to use
AES-GCM to allow verification of encrypted data retrieved from a
database.

Also, the record classes for SQLAlchemy were changed to have an
auto-incrementing ID, to make it easy to follow the events of an
application, for example when updating view models, without additional
complication of a separate application log. This change makes the
SQLAlchemy library classes ultimately less “scalable” than the Cassandra
classes, because an auto-incrementing ID must operate from a single thread.
Overall, it seems like a good trade-off for early-stage development. Later,
when the auto-incrementing ID bottleneck would otherwise throttle
performance, “scaling-up” could involve switching application
infrastructure to use a separate application log.

Version 4.0.0 (released 11 Dec 2017)

Version 3.x

Version 3.x series was a released after quite of a lot of refactoring
made things backwards-incompatible. Documentation was greatly improved, in
particular with pages reflecting the architectural layers of the library
(infrastructure, domain, application).

Version 3.1.0 (released 23 Nov 2017)

Version 3.0.0 (released 25 May 2017)

Version 2.x

Version 2.x series was a major rewrite that implemented two distinct
kinds of sequences: events sequenced by integer version numbers and
events sequenced in time, with an archetypal “sequenced item” persistence
model for storing events.

Version 2.1.1 (released 30 Mar 2017)

Version 2.1.0 (released 27 Mar 2017)

Version 2.0.0 (released 27 Mar 2017)

Version 1.x

Version 1.x series was an extension of the version 0.x series,
and attempted to bridge between sequencing events with both timestamps
and version numbers.

Version 1.2.1 (released 23 Oct 2016)

Version 1.2.0 (released 23 Oct 2016)

Version 1.1.0 (released 19 Oct 2016)

Version 1.0.10 (released 5 Oct 2016)

Version 1.0.9 (released 17 Aug 2016)

Version 1.0.8 (released 30 Jul 2016)

Version 1.0.7 (released 13 Jul 2016)

Version 1.0.6 (released 7 Jul 2016)

Version 1.0.5 (released 1 Jul 2016)

Version 1.0.4 (released 30 Jun 2016)

Version 1.0.3 (released 30 Jun 2016)

Version 1.0.2 (released 8 Jun 2016)

Version 1.0.1 (released 7 Jun 2016)

Version 0.x

Version 0.x series was the initial cut of the code, all events were
sequenced by timestamps, or TimeUUIDs in Cassandra, because the project
originally emerged whilst working with Cassandra.

Version 0.9.4 (released 11 Feb 2016)

Version 0.9.3 (released 1 Dec 2015)

Version 0.9.2 (released 1 Dec 2015)

Version 0.9.1 (released 10 Nov 2015)

Version 0.9.0 (released 14 Sep 2015)

Version 0.8.4 (released 14 Sep 2015)

Version 0.8.3 (released 5 Sep 2015)

Version 0.8.2 (released 5 Sep 2015)

Version 0.8.1 (released 4 Sep 2015)

Version 0.8.0 (released 29 Aug 2015)

Version 0.7.0 (released 29 Aug 2015)

Version 0.6.0 (released 28 Aug 2015)

Version 0.5.0 (released 28 Aug 2015)

Version 0.4.0 (released 28 Aug 2015)

Version 0.3.0 (released 28 Aug 2015)

Version 0.2.0 (released 27 Aug 2015)

Version 0.1.0 (released 27 Aug 2015)

Version 0.0.1 (released 27 Aug 2015)

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 eventsourcing	

 	
 	
 eventsourcing.application	

 	
 	
 eventsourcing.cipher	

 	
 	
 eventsourcing.compressor	

 	
 	
 eventsourcing.domain	

 	
 	
 eventsourcing.interface	

 	
 	
 eventsourcing.persistence	

 	
 	
 eventsourcing.popo	

 	
 	
 eventsourcing.postgres	

 	
 	
 eventsourcing.sqlite	

 	
 	
 eventsourcing.system	

 	
 	
 eventsourcing.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Z

_

 	
 	__base_init__() (eventsourcing.domain.Aggregate method)

 	__call__() (eventsourcing.domain.BoundCommandMethodDecorator method)

 	(eventsourcing.domain.MetaAggregate method)

 	__eq__() (eventsourcing.domain.Aggregate method)

 	__getitem__() (eventsourcing.application.LocalNotificationLog method)

 	(eventsourcing.application.NotificationLog method)

 	(eventsourcing.interface.NotificationLogJSONClient method)

 	__init__() (eventsourcing.application.Application method)

 	(eventsourcing.application.LocalNotificationLog method)

 	(eventsourcing.application.Repository method)

 	(eventsourcing.cipher.AESCipher method)

 	(eventsourcing.domain.BoundCommandMethodDecorator method)

 	(eventsourcing.domain.MetaAggregate method)

 	(eventsourcing.domain.MetaDomainEvent method)

 	(eventsourcing.domain.UnboundCommandMethodDecorator method)

 	(eventsourcing.interface.NotificationLogJSONClient method)

 	(eventsourcing.interface.NotificationLogJSONService method)

 	(eventsourcing.persistence.Cipher method)

 	(eventsourcing.persistence.EventStore method)

 	(eventsourcing.persistence.InfrastructureFactory method)

 	(eventsourcing.persistence.JSONTranscoder method)

 	(eventsourcing.persistence.Mapper method)

 	(eventsourcing.persistence.Transcoder method)

 	(eventsourcing.popo.POPOAggregateRecorder method)

 	(eventsourcing.popo.POPOProcessRecorder method)

 	(eventsourcing.postgres.Factory method)

 	(eventsourcing.postgres.PostgresAggregateRecorder method)

 	(eventsourcing.postgres.PostgresApplicationRecorder method)

 	(eventsourcing.postgres.PostgresProcessRecorder method)

 	(eventsourcing.sqlite.Factory method)

 	(eventsourcing.sqlite.SQLiteAggregateRecorder method)

 	(eventsourcing.sqlite.SQLiteApplicationRecorder method)

 	(eventsourcing.sqlite.SQLiteProcessRecorder method)

 	(eventsourcing.system.Follower method)

 	(eventsourcing.system.Leader method)

 	(eventsourcing.system.MultiThreadedRunner method)

 	(eventsourcing.system.MultiThreadedRunnerThread method)

 	(eventsourcing.system.NotificationLogReader method)

 	(eventsourcing.system.ProcessEvent method)

 	(eventsourcing.system.Runner method)

 	(eventsourcing.system.SingleThreadedRunner method)

 	(eventsourcing.system.System method)

 	
 	__new__() (eventsourcing.domain.Aggregate static method)

 	(eventsourcing.domain.MetaAggregate static method)

 	(eventsourcing.domain.MetaDomainEvent static method)

 	__repr__() (eventsourcing.domain.Aggregate method)

 	_create() (eventsourcing.domain.MetaAggregate method)

A

 	
 	AESCipher (class in eventsourcing.cipher)

 	Aggregate (class in eventsourcing.domain)

 	aggregate() (in module eventsourcing.domain)

 	Aggregate.Created (class in eventsourcing.domain)

 	Aggregate.Event (class in eventsourcing.domain)

 	aggregate_recorder() (eventsourcing.persistence.InfrastructureFactory method)

 	(eventsourcing.popo.Factory method)

 	(eventsourcing.postgres.Factory method)

 	(eventsourcing.sqlite.Factory method)

 	AggregateCreated (class in eventsourcing.domain)

 	
 	AggregateEvent (class in eventsourcing.domain)

 	AggregateNotFound

 	AggregateRecorder (class in eventsourcing.persistence)

 	Application (class in eventsourcing.application)

 	application_recorder() (eventsourcing.persistence.InfrastructureFactory method)

 	(eventsourcing.popo.Factory method)

 	(eventsourcing.postgres.Factory method)

 	(eventsourcing.sqlite.Factory method)

 	ApplicationRecorder (class in eventsourcing.persistence)

 	apply() (eventsourcing.domain.AggregateEvent method)

 	(eventsourcing.domain.DecoratedEvent method)

B

 	
 	BoundCommandMethodDecorator (class in eventsourcing.domain)

C

 	
 	Cipher (class in eventsourcing.persistence)

 	cipher() (eventsourcing.persistence.InfrastructureFactory method)

 	collect_events() (eventsourcing.domain.Aggregate method)

 	compress() (eventsourcing.compressor.ZlibCompressor method)

 	(eventsourcing.persistence.Compressor method)

 	Compressor (class in eventsourcing.persistence)

 	compressor() (eventsourcing.persistence.InfrastructureFactory method)

 	construct() (eventsourcing.persistence.InfrastructureFactory class method)

 	construct_env() (eventsourcing.application.Application method)

 	construct_event_store() (eventsourcing.application.Application method)

 	
 	construct_factory() (eventsourcing.application.Application method)

 	construct_mapper() (eventsourcing.application.Application method)

 	construct_notification_log() (eventsourcing.application.Application method)

 	construct_recorder() (eventsourcing.application.Application method)

 	(eventsourcing.system.Follower method)

 	construct_repository() (eventsourcing.application.Application method)

 	construct_snapshot_store() (eventsourcing.application.Application method)

 	construct_transcoder() (eventsourcing.application.Application method)

 	create_id() (eventsourcing.domain.MetaAggregate static method)

 	create_key() (eventsourcing.cipher.AESCipher static method)

 	created_on (eventsourcing.domain.Aggregate attribute)

D

 	
 	DatabaseError

 	DataError

 	DatetimeAsISO (class in eventsourcing.persistence)

 	DecimalAsStr (class in eventsourcing.persistence)

 	decode() (eventsourcing.persistence.DatetimeAsISO method)

 	(eventsourcing.persistence.DecimalAsStr method)

 	(eventsourcing.persistence.JSONTranscoder method)

 	(eventsourcing.persistence.Transcoder method)

 	(eventsourcing.persistence.Transcoding method)

 	(eventsourcing.persistence.UUIDAsHex method)

 	
 	decompress() (eventsourcing.compressor.ZlibCompressor method)

 	(eventsourcing.persistence.Compressor method)

 	DecoratedEvent (class in eventsourcing.domain)

 	decrypt() (eventsourcing.cipher.AESCipher method)

 	(eventsourcing.persistence.Cipher method)

 	DomainEvent (class in eventsourcing.domain)

E

 	
 	encode() (eventsourcing.persistence.DatetimeAsISO method)

 	(eventsourcing.persistence.DecimalAsStr method)

 	(eventsourcing.persistence.JSONTranscoder method)

 	(eventsourcing.persistence.Transcoder method)

 	(eventsourcing.persistence.Transcoding method)

 	(eventsourcing.persistence.UUIDAsHex method)

 	encrypt() (eventsourcing.cipher.AESCipher method)

 	(eventsourcing.persistence.Cipher method)

 	event() (in module eventsourcing.domain)

 	event_store() (eventsourcing.persistence.InfrastructureFactory static method)

 	eventsourcing.application (module)

 	
 	eventsourcing.cipher (module)

 	eventsourcing.compressor (module)

 	eventsourcing.domain (module)

 	eventsourcing.interface (module)

 	eventsourcing.persistence (module)

 	eventsourcing.popo (module)

 	eventsourcing.postgres (module)

 	eventsourcing.sqlite (module)

 	eventsourcing.system (module)

 	eventsourcing.utils (module)

 	EventStore (class in eventsourcing.persistence)

F

 	
 	Factory (class in eventsourcing.popo)

 	(class in eventsourcing.postgres)

 	(class in eventsourcing.sqlite)

 	
 	follow() (eventsourcing.system.Follower method)

 	Follower (class in eventsourcing.system)

 	from_domain_event() (eventsourcing.persistence.Mapper method)

G

 	
 	get() (eventsourcing.application.Repository method)

 	(eventsourcing.persistence.EventStore method)

 	(eventsourcing.system.MultiThreadedRunner method)

 	(eventsourcing.system.Runner method)

 	(eventsourcing.system.SingleThreadedRunner method)

 	
 	get_log_section() (eventsourcing.interface.NotificationLogInterface method)

 	(eventsourcing.interface.NotificationLogJSONService method)

 	get_notifications() (eventsourcing.interface.NotificationLogInterface method)

 	(eventsourcing.interface.NotificationLogJSONService method)

 	get_topic() (in module eventsourcing.utils)

 	getenv() (eventsourcing.persistence.InfrastructureFactory method)

I

 	
 	id (eventsourcing.domain.Aggregate attribute)

 	InfrastructureFactory (class in eventsourcing.persistence)

 	insert_events() (eventsourcing.persistence.AggregateRecorder method)

 	(eventsourcing.popo.POPOAggregateRecorder method)

 	(eventsourcing.postgres.PostgresAggregateRecorder method)

 	(eventsourcing.sqlite.SQLiteAggregateRecorder method)

 	
 	IntegrityError

 	InterfaceError

 	InternalError

 	is_snapshotting_enabled() (eventsourcing.persistence.InfrastructureFactory method)

J

 	
 	JSONTranscoder (class in eventsourcing.persistence)

L

 	
 	lead() (eventsourcing.system.Leader method)

 	
 	Leader (class in eventsourcing.system)

 	LocalNotificationLog (class in eventsourcing.application)

M

 	
 	Mapper (class in eventsourcing.persistence)

 	mapper() (eventsourcing.persistence.InfrastructureFactory method)

 	max_notification_id() (eventsourcing.persistence.ApplicationRecorder method)

 	(eventsourcing.popo.POPOApplicationRecorder method)

 	(eventsourcing.postgres.PostgresApplicationRecorder method)

 	(eventsourcing.sqlite.SQLiteApplicationRecorder method)

 	max_tracking_id() (eventsourcing.persistence.ProcessRecorder method)

 	(eventsourcing.popo.POPOProcessRecorder method)

 	(eventsourcing.postgres.PostgresProcessRecorder method)

 	(eventsourcing.sqlite.SQLiteProcessRecorder method)

 	
 	MetaAggregate (class in eventsourcing.domain)

 	MetaDomainEvent (class in eventsourcing.domain)

 	modified_on (eventsourcing.domain.Aggregate attribute)

 	MultiThreadedRunner (class in eventsourcing.system)

 	MultiThreadedRunnerThread (class in eventsourcing.system)

 	mutate() (eventsourcing.domain.AggregateCreated method)

 	(eventsourcing.domain.AggregateEvent method)

 	(eventsourcing.domain.Snapshot method)

N

 	
 	name (eventsourcing.persistence.Transcoding attribute)

 	Notification (class in eventsourcing.persistence)

 	NotificationLog (class in eventsourcing.application)

 	NotificationLogInterface (class in eventsourcing.interface)

 	NotificationLogJSONClient (class in eventsourcing.interface)

 	
 	NotificationLogJSONService (class in eventsourcing.interface)

 	NotificationLogReader (class in eventsourcing.system)

 	notify() (eventsourcing.application.Application method)

 	(eventsourcing.system.Leader method)

 	NotSupportedError

O

 	
 	OperationalError

P

 	
 	pending_events (eventsourcing.domain.Aggregate attribute)

 	PersistenceError

 	policy() (eventsourcing.system.Follower method)

 	POPOAggregateRecorder (class in eventsourcing.popo)

 	POPOApplicationRecorder (class in eventsourcing.popo)

 	POPOProcessRecorder (class in eventsourcing.popo)

 	PostgresAggregateRecorder (class in eventsourcing.postgres)

 	PostgresApplicationRecorder (class in eventsourcing.postgres)

 	PostgresProcessRecorder (class in eventsourcing.postgres)

 	process_recorder() (eventsourcing.persistence.InfrastructureFactory method)

 	(eventsourcing.popo.Factory method)

 	(eventsourcing.postgres.Factory method)

 	(eventsourcing.sqlite.Factory method)

 	
 	ProcessApplication (class in eventsourcing.system)

 	ProcessEvent (class in eventsourcing.system)

 	ProcessRecorder (class in eventsourcing.persistence)

 	ProgrammingError

 	prompt_followers() (eventsourcing.system.Leader method)

 	Promptable (class in eventsourcing.system)

 	pull_and_process() (eventsourcing.system.Follower method)

 	put() (eventsourcing.persistence.EventStore method)

R

 	
 	random() (in module eventsourcing.utils)

 	read() (eventsourcing.system.NotificationLogReader method)

 	receive_prompt() (eventsourcing.system.MultiThreadedRunnerThread method)

 	(eventsourcing.system.Promptable method)

 	(eventsourcing.system.SingleThreadedRunner method)

 	record() (eventsourcing.system.Follower method)

 	RecordConflictError

 	Recorder (class in eventsourcing.persistence)

 	
 	register() (eventsourcing.persistence.Transcoder method)

 	register_transcodings() (eventsourcing.application.Application method)

 	Repository (class in eventsourcing.application)

 	resolve_topic() (in module eventsourcing.utils)

 	retry() (in module eventsourcing.utils)

 	run() (eventsourcing.system.MultiThreadedRunnerThread method)

 	Runner (class in eventsourcing.system)

 	RunnerAlreadyStarted

S

 	
 	save() (eventsourcing.application.Application method)

 	(eventsourcing.system.ProcessEvent method)

 	Section (class in eventsourcing.application)

 	select() (eventsourcing.application.LocalNotificationLog method)

 	(eventsourcing.application.NotificationLog method)

 	(eventsourcing.interface.NotificationLogJSONClient method)

 	(eventsourcing.system.NotificationLogReader method)

 	select_events() (eventsourcing.persistence.AggregateRecorder method)

 	(eventsourcing.popo.POPOAggregateRecorder method)

 	(eventsourcing.postgres.PostgresAggregateRecorder method)

 	(eventsourcing.sqlite.SQLiteAggregateRecorder method)

 	select_notifications() (eventsourcing.persistence.ApplicationRecorder method)

 	(eventsourcing.popo.POPOApplicationRecorder method)

 	(eventsourcing.postgres.PostgresApplicationRecorder method)

 	(eventsourcing.sqlite.SQLiteApplicationRecorder method)

 	
 	SingleThreadedRunner (class in eventsourcing.system)

 	Snapshot (class in eventsourcing.domain)

 	SQLiteAggregateRecorder (class in eventsourcing.sqlite)

 	SQLiteApplicationRecorder (class in eventsourcing.sqlite)

 	SQLiteProcessRecorder (class in eventsourcing.sqlite)

 	start() (eventsourcing.system.MultiThreadedRunner method)

 	(eventsourcing.system.Runner method)

 	(eventsourcing.system.SingleThreadedRunner method)

 	stop() (eventsourcing.system.MultiThreadedRunner method)

 	(eventsourcing.system.Runner method)

 	(eventsourcing.system.SingleThreadedRunner method)

 	StoredEvent (class in eventsourcing.persistence)

 	strtobool() (in module eventsourcing.utils)

 	System (class in eventsourcing.system)

T

 	
 	take() (eventsourcing.domain.Snapshot class method)

 	take_snapshot() (eventsourcing.application.Application method)

 	to_domain_event() (eventsourcing.persistence.Mapper method)

 	Tracking (class in eventsourcing.persistence)

 	Transcoder (class in eventsourcing.persistence)

 	Transcoding (class in eventsourcing.persistence)

 	
 	trigger_event() (eventsourcing.domain.Aggregate method)

 	triggers() (in module eventsourcing.domain)

 	type (eventsourcing.persistence.DatetimeAsISO attribute)

 	(eventsourcing.persistence.DecimalAsStr attribute)

 	(eventsourcing.persistence.Transcoding attribute)

 	(eventsourcing.persistence.UUIDAsHex attribute)

U

 	
 	UnboundCommandMethodDecorator (class in eventsourcing.domain)

 	
 	UUIDAsHex (class in eventsourcing.persistence)

V

 	
 	version (eventsourcing.domain.Aggregate attribute)

 	
 	VersionError

Z

 	
 	ZlibCompressor (class in eventsourcing.compressor)

 Source code for datetime

"""Concrete date/time and related types.

See http://www.iana.org/time-zones/repository/tz-link.html for
time zone and DST data sources.
"""

import time as _time
import math as _math
import sys

def _cmp(x, y):
 return 0 if x == y else 1 if x > y else -1

MINYEAR = 1
MAXYEAR = 9999
_MAXORDINAL = 3652059 # date.max.toordinal()

Utility functions, adapted from Python's Demo/classes/Dates.py, which
also assumes the current Gregorian calendar indefinitely extended in
both directions. Difference: Dates.py calls January 1 of year 0 day
number 1. The code here calls January 1 of year 1 day number 1. This is
to match the definition of the "proleptic Gregorian" calendar in Dershowitz
and Reingold's "Calendrical Calculations", where it's the base calendar
for all computations. See the book for algorithms for converting between
proleptic Gregorian ordinals and many other calendar systems.

-1 is a placeholder for indexing purposes.
_DAYS_IN_MONTH = [-1, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

_DAYS_BEFORE_MONTH = [-1] # -1 is a placeholder for indexing purposes.
dbm = 0
for dim in _DAYS_IN_MONTH[1:]:
 _DAYS_BEFORE_MONTH.append(dbm)
 dbm += dim
del dbm, dim

def _is_leap(year):
 "year -> 1 if leap year, else 0."
 return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)

def _days_before_year(year):
 "year -> number of days before January 1st of year."
 y = year - 1
 return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):
 "year, month -> number of days in that month in that year."
 assert 1 <= month <= 12, month
 if month == 2 and _is_leap(year):
 return 29
 return _DAYS_IN_MONTH[month]

def _days_before_month(year, month):
 "year, month -> number of days in year preceding first day of month."
 assert 1 <= month <= 12, 'month must be in 1..12'
 return _DAYS_BEFORE_MONTH[month] + (month > 2 and _is_leap(year))

def _ymd2ord(year, month, day):
 "year, month, day -> ordinal, considering 01-Jan-0001 as day 1."
 assert 1 <= month <= 12, 'month must be in 1..12'
 dim = _days_in_month(year, month)
 assert 1 <= day <= dim, ('day must be in 1..%d' % dim)
 return (_days_before_year(year) +
 _days_before_month(year, month) +
 day)

_DI400Y = _days_before_year(401) # number of days in 400 years
_DI100Y = _days_before_year(101) # " " " " 100 "
_DI4Y = _days_before_year(5) # " " " " 4 "

A 4-year cycle has an extra leap day over what we'd get from pasting
together 4 single years.
assert _DI4Y == 4 * 365 + 1

Similarly, a 400-year cycle has an extra leap day over what we'd get from
pasting together 4 100-year cycles.
assert _DI400Y == 4 * _DI100Y + 1

OTOH, a 100-year cycle has one fewer leap day than we'd get from
pasting together 25 4-year cycles.
assert _DI100Y == 25 * _DI4Y - 1

def _ord2ymd(n):
 "ordinal -> (year, month, day), considering 01-Jan-0001 as day 1."

 # n is a 1-based index, starting at 1-Jan-1. The pattern of leap years
 # repeats exactly every 400 years. The basic strategy is to find the
 # closest 400-year boundary at or before n, then work with the offset
 # from that boundary to n. Life is much clearer if we subtract 1 from
 # n first -- then the values of n at 400-year boundaries are exactly
 # those divisible by _DI400Y:
 #
 # D M Y n n-1
 # -- --- ---- ---------- ----------------
 # 31 Dec -400 -_DI400Y -_DI400Y -1
 # 1 Jan -399 -_DI400Y +1 -_DI400Y 400-year boundary
 # ...
 # 30 Dec 000 -1 -2
 # 31 Dec 000 0 -1
 # 1 Jan 001 1 0 400-year boundary
 # 2 Jan 001 2 1
 # 3 Jan 001 3 2
 # ...
 # 31 Dec 400 _DI400Y _DI400Y -1
 # 1 Jan 401 _DI400Y +1 _DI400Y 400-year boundary
 n -= 1
 n400, n = divmod(n, _DI400Y)
 year = n400 * 400 + 1 # ..., -399, 1, 401, ...

 # Now n is the (non-negative) offset, in days, from January 1 of year, to
 # the desired date. Now compute how many 100-year cycles precede n.
 # Note that it's possible for n100 to equal 4! In that case 4 full
 # 100-year cycles precede the desired day, which implies the desired
 # day is December 31 at the end of a 400-year cycle.
 n100, n = divmod(n, _DI100Y)

 # Now compute how many 4-year cycles precede it.
 n4, n = divmod(n, _DI4Y)

 # And now how many single years. Again n1 can be 4, and again meaning
 # that the desired day is December 31 at the end of the 4-year cycle.
 n1, n = divmod(n, 365)

 year += n100 * 100 + n4 * 4 + n1
 if n1 == 4 or n100 == 4:
 assert n == 0
 return year-1, 12, 31

 # Now the year is correct, and n is the offset from January 1. We find
 # the month via an estimate that's either exact or one too large.
 leapyear = n1 == 3 and (n4 != 24 or n100 == 3)
 assert leapyear == _is_leap(year)
 month = (n + 50) >> 5
 preceding = _DAYS_BEFORE_MONTH[month] + (month > 2 and leapyear)
 if preceding > n: # estimate is too large
 month -= 1
 preceding -= _DAYS_IN_MONTH[month] + (month == 2 and leapyear)
 n -= preceding
 assert 0 <= n < _days_in_month(year, month)

 # Now the year and month are correct, and n is the offset from the
 # start of that month: we're done!
 return year, month, n+1

Month and day names. For localized versions, see the calendar module.
_MONTHNAMES = [None, "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
_DAYNAMES = [None, "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]

def _build_struct_time(y, m, d, hh, mm, ss, dstflag):
 wday = (_ymd2ord(y, m, d) + 6) % 7
 dnum = _days_before_month(y, m) + d
 return _time.struct_time((y, m, d, hh, mm, ss, wday, dnum, dstflag))

def _format_time(hh, mm, ss, us, timespec='auto'):
 specs = {
 'hours': '{:02d}',
 'minutes': '{:02d}:{:02d}',
 'seconds': '{:02d}:{:02d}:{:02d}',
 'milliseconds': '{:02d}:{:02d}:{:02d}.{:03d}',
 'microseconds': '{:02d}:{:02d}:{:02d}.{:06d}'
 }

 if timespec == 'auto':
 # Skip trailing microseconds when us==0.
 timespec = 'microseconds' if us else 'seconds'
 elif timespec == 'milliseconds':
 us //= 1000
 try:
 fmt = specs[timespec]
 except KeyError:
 raise ValueError('Unknown timespec value')
 else:
 return fmt.format(hh, mm, ss, us)

def _format_offset(off):
 s = ''
 if off is not None:
 if off.days < 0:
 sign = "-"
 off = -off
 else:
 sign = "+"
 hh, mm = divmod(off, timedelta(hours=1))
 mm, ss = divmod(mm, timedelta(minutes=1))
 s += "%s%02d:%02d" % (sign, hh, mm)
 if ss or ss.microseconds:
 s += ":%02d" % ss.seconds

 if ss.microseconds:
 s += '.%06d' % ss.microseconds
 return s

Correctly substitute for %z and %Z escapes in strftime formats.
def _wrap_strftime(object, format, timetuple):
 # Don't call utcoffset() or tzname() unless actually needed.
 freplace = None # the string to use for %f
 zreplace = None # the string to use for %z
 Zreplace = None # the string to use for %Z

 # Scan format for %z and %Z escapes, replacing as needed.
 newformat = []
 push = newformat.append
 i, n = 0, len(format)
 while i < n:
 ch = format[i]
 i += 1
 if ch == '%':
 if i < n:
 ch = format[i]
 i += 1
 if ch == 'f':
 if freplace is None:
 freplace = '%06d' % getattr(object,
 'microsecond', 0)
 newformat.append(freplace)
 elif ch == 'z':
 if zreplace is None:
 zreplace = ""
 if hasattr(object, "utcoffset"):
 offset = object.utcoffset()
 if offset is not None:
 sign = '+'
 if offset.days < 0:
 offset = -offset
 sign = '-'
 h, rest = divmod(offset, timedelta(hours=1))
 m, rest = divmod(rest, timedelta(minutes=1))
 s = rest.seconds
 u = offset.microseconds
 if u:
 zreplace = '%c%02d%02d%02d.%06d' % (sign, h, m, s, u)
 elif s:
 zreplace = '%c%02d%02d%02d' % (sign, h, m, s)
 else:
 zreplace = '%c%02d%02d' % (sign, h, m)
 assert '%' not in zreplace
 newformat.append(zreplace)
 elif ch == 'Z':
 if Zreplace is None:
 Zreplace = ""
 if hasattr(object, "tzname"):
 s = object.tzname()
 if s is not None:
 # strftime is going to have at this: escape %
 Zreplace = s.replace('%', '%%')
 newformat.append(Zreplace)
 else:
 push('%')
 push(ch)
 else:
 push('%')
 else:
 push(ch)
 newformat = "".join(newformat)
 return _time.strftime(newformat, timetuple)

Helpers for parsing the result of isoformat()
def _parse_isoformat_date(dtstr):
 # It is assumed that this function will only be called with a
 # string of length exactly 10, and (though this is not used) ASCII-only
 year = int(dtstr[0:4])
 if dtstr[4] != '-':
 raise ValueError('Invalid date separator: %s' % dtstr[4])

 month = int(dtstr[5:7])

 if dtstr[7] != '-':
 raise ValueError('Invalid date separator')

 day = int(dtstr[8:10])

 return [year, month, day]

def _parse_hh_mm_ss_ff(tstr):
 # Parses things of the form HH[:MM[:SS[.fff[fff]]]]
 len_str = len(tstr)

 time_comps = [0, 0, 0, 0]
 pos = 0
 for comp in range(0, 3):
 if (len_str - pos) < 2:
 raise ValueError('Incomplete time component')

 time_comps[comp] = int(tstr[pos:pos+2])

 pos += 2
 next_char = tstr[pos:pos+1]

 if not next_char or comp >= 2:
 break

 if next_char != ':':
 raise ValueError('Invalid time separator: %c' % next_char)

 pos += 1

 if pos < len_str:
 if tstr[pos] != '.':
 raise ValueError('Invalid microsecond component')
 else:
 pos += 1

 len_remainder = len_str - pos
 if len_remainder not in (3, 6):
 raise ValueError('Invalid microsecond component')

 time_comps[3] = int(tstr[pos:])
 if len_remainder == 3:
 time_comps[3] *= 1000

 return time_comps

def _parse_isoformat_time(tstr):
 # Format supported is HH[:MM[:SS[.fff[fff]]]][+HH:MM[:SS[.ffffff]]]
 len_str = len(tstr)
 if len_str < 2:
 raise ValueError('Isoformat time too short')

 # This is equivalent to re.search('[+-]', tstr), but faster
 tz_pos = (tstr.find('-') + 1 or tstr.find('+') + 1)
 timestr = tstr[:tz_pos-1] if tz_pos > 0 else tstr

 time_comps = _parse_hh_mm_ss_ff(timestr)

 tzi = None
 if tz_pos > 0:
 tzstr = tstr[tz_pos:]

 # Valid time zone strings are:
 # HH:MM len: 5
 # HH:MM:SS len: 8
 # HH:MM:SS.ffffff len: 15

 if len(tzstr) not in (5, 8, 15):
 raise ValueError('Malformed time zone string')

 tz_comps = _parse_hh_mm_ss_ff(tzstr)
 if all(x == 0 for x in tz_comps):
 tzi = timezone.utc
 else:
 tzsign = -1 if tstr[tz_pos - 1] == '-' else 1

 td = timedelta(hours=tz_comps[0], minutes=tz_comps[1],
 seconds=tz_comps[2], microseconds=tz_comps[3])

 tzi = timezone(tzsign * td)

 time_comps.append(tzi)

 return time_comps

Just raise TypeError if the arg isn't None or a string.
def _check_tzname(name):
 if name is not None and not isinstance(name, str):
 raise TypeError("tzinfo.tzname() must return None or string, "
 "not '%s'" % type(name))

name is the offset-producing method, "utcoffset" or "dst".
offset is what it returned.
If offset isn't None or timedelta, raises TypeError.
If offset is None, returns None.
Else offset is checked for being in range.
If it is, its integer value is returned. Else ValueError is raised.
def _check_utc_offset(name, offset):
 assert name in ("utcoffset", "dst")
 if offset is None:
 return
 if not isinstance(offset, timedelta):
 raise TypeError("tzinfo.%s() must return None "
 "or timedelta, not '%s'" % (name, type(offset)))
 if not -timedelta(1) < offset < timedelta(1):
 raise ValueError("%s()=%s, must be strictly between "
 "-timedelta(hours=24) and timedelta(hours=24)" %
 (name, offset))

def _check_int_field(value):
 if isinstance(value, int):
 return value
 if not isinstance(value, float):
 try:
 value = value.__int__()
 except AttributeError:
 pass
 else:
 if isinstance(value, int):
 return value
 raise TypeError('__int__ returned non-int (type %s)' %
 type(value).__name__)
 raise TypeError('an integer is required (got type %s)' %
 type(value).__name__)
 raise TypeError('integer argument expected, got float')

def _check_date_fields(year, month, day):
 year = _check_int_field(year)
 month = _check_int_field(month)
 day = _check_int_field(day)
 if not MINYEAR <= year <= MAXYEAR:
 raise ValueError('year must be in %d..%d' % (MINYEAR, MAXYEAR), year)
 if not 1 <= month <= 12:
 raise ValueError('month must be in 1..12', month)
 dim = _days_in_month(year, month)
 if not 1 <= day <= dim:
 raise ValueError('day must be in 1..%d' % dim, day)
 return year, month, day

def _check_time_fields(hour, minute, second, microsecond, fold):
 hour = _check_int_field(hour)
 minute = _check_int_field(minute)
 second = _check_int_field(second)
 microsecond = _check_int_field(microsecond)
 if not 0 <= hour <= 23:
 raise ValueError('hour must be in 0..23', hour)
 if not 0 <= minute <= 59:
 raise ValueError('minute must be in 0..59', minute)
 if not 0 <= second <= 59:
 raise ValueError('second must be in 0..59', second)
 if not 0 <= microsecond <= 999999:
 raise ValueError('microsecond must be in 0..999999', microsecond)
 if fold not in (0, 1):
 raise ValueError('fold must be either 0 or 1', fold)
 return hour, minute, second, microsecond, fold

def _check_tzinfo_arg(tz):
 if tz is not None and not isinstance(tz, tzinfo):
 raise TypeError("tzinfo argument must be None or of a tzinfo subclass")

def _cmperror(x, y):
 raise TypeError("can't compare '%s' to '%s'" % (
 type(x).__name__, type(y).__name__))

def _divide_and_round(a, b):
 """divide a by b and round result to the nearest integer

 When the ratio is exactly half-way between two integers,
 the even integer is returned.
 """
 # Based on the reference implementation for divmod_near
 # in Objects/longobject.c.
 q, r = divmod(a, b)
 # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
 # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
 # positive, 2 * r < b if b negative.
 r *= 2
 greater_than_half = r > b if b > 0 else r < b
 if greater_than_half or r == b and q % 2 == 1:
 q += 1

 return q

class timedelta:
 """Represent the difference between two datetime objects.

 Supported operators:

 - add, subtract timedelta
 - unary plus, minus, abs
 - compare to timedelta
 - multiply, divide by int

 In addition, datetime supports subtraction of two datetime objects
 returning a timedelta, and addition or subtraction of a datetime
 and a timedelta giving a datetime.

 Representation: (days, seconds, microseconds). Why? Because I
 felt like it.
 """
 __slots__ = '_days', '_seconds', '_microseconds', '_hashcode'

 def __new__(cls, days=0, seconds=0, microseconds=0,
 milliseconds=0, minutes=0, hours=0, weeks=0):
 # Doing this efficiently and accurately in C is going to be difficult
 # and error-prone, due to ubiquitous overflow possibilities, and that
 # C double doesn't have enough bits of precision to represent
 # microseconds over 10K years faithfully. The code here tries to make
 # explicit where go-fast assumptions can be relied on, in order to
 # guide the C implementation; it's way more convoluted than speed-
 # ignoring auto-overflow-to-long idiomatic Python could be.

 # XXX Check that all inputs are ints or floats.

 # Final values, all integer.
 # s and us fit in 32-bit signed ints; d isn't bounded.
 d = s = us = 0

 # Normalize everything to days, seconds, microseconds.
 days += weeks*7
 seconds += minutes*60 + hours*3600
 microseconds += milliseconds*1000

 # Get rid of all fractions, and normalize s and us.
 # Take a deep breath <wink>.
 if isinstance(days, float):
 dayfrac, days = _math.modf(days)
 daysecondsfrac, daysecondswhole = _math.modf(dayfrac * (24.*3600.))
 assert daysecondswhole == int(daysecondswhole) # can't overflow
 s = int(daysecondswhole)
 assert days == int(days)
 d = int(days)
 else:
 daysecondsfrac = 0.0
 d = days
 assert isinstance(daysecondsfrac, float)
 assert abs(daysecondsfrac) <= 1.0
 assert isinstance(d, int)
 assert abs(s) <= 24 * 3600
 # days isn't referenced again before redefinition

 if isinstance(seconds, float):
 secondsfrac, seconds = _math.modf(seconds)
 assert seconds == int(seconds)
 seconds = int(seconds)
 secondsfrac += daysecondsfrac
 assert abs(secondsfrac) <= 2.0
 else:
 secondsfrac = daysecondsfrac
 # daysecondsfrac isn't referenced again
 assert isinstance(secondsfrac, float)
 assert abs(secondsfrac) <= 2.0

 assert isinstance(seconds, int)
 days, seconds = divmod(seconds, 24*3600)
 d += days
 s += int(seconds) # can't overflow
 assert isinstance(s, int)
 assert abs(s) <= 2 * 24 * 3600
 # seconds isn't referenced again before redefinition

 usdouble = secondsfrac * 1e6
 assert abs(usdouble) < 2.1e6 # exact value not critical
 # secondsfrac isn't referenced again

 if isinstance(microseconds, float):
 microseconds = round(microseconds + usdouble)
 seconds, microseconds = divmod(microseconds, 1000000)
 days, seconds = divmod(seconds, 24*3600)
 d += days
 s += seconds
 else:
 microseconds = int(microseconds)
 seconds, microseconds = divmod(microseconds, 1000000)
 days, seconds = divmod(seconds, 24*3600)
 d += days
 s += seconds
 microseconds = round(microseconds + usdouble)
 assert isinstance(s, int)
 assert isinstance(microseconds, int)
 assert abs(s) <= 3 * 24 * 3600
 assert abs(microseconds) < 3.1e6

 # Just a little bit of carrying possible for microseconds and seconds.
 seconds, us = divmod(microseconds, 1000000)
 s += seconds
 days, s = divmod(s, 24*3600)
 d += days

 assert isinstance(d, int)
 assert isinstance(s, int) and 0 <= s < 24*3600
 assert isinstance(us, int) and 0 <= us < 1000000

 if abs(d) > 999999999:
 raise OverflowError("timedelta # of days is too large: %d" % d)

 self = object.__new__(cls)
 self._days = d
 self._seconds = s
 self._microseconds = us
 self._hashcode = -1
 return self

 def __repr__(self):
 args = []
 if self._days:
 args.append("days=%d" % self._days)
 if self._seconds:
 args.append("seconds=%d" % self._seconds)
 if self._microseconds:
 args.append("microseconds=%d" % self._microseconds)
 if not args:
 args.append('0')
 return "%s.%s(%s)" % (self.__class__.__module__,
 self.__class__.__qualname__,
 ', '.join(args))

 def __str__(self):
 mm, ss = divmod(self._seconds, 60)
 hh, mm = divmod(mm, 60)
 s = "%d:%02d:%02d" % (hh, mm, ss)
 if self._days:
 def plural(n):
 return n, abs(n) != 1 and "s" or ""
 s = ("%d day%s, " % plural(self._days)) + s
 if self._microseconds:
 s = s + ".%06d" % self._microseconds
 return s

 def total_seconds(self):
 """Total seconds in the duration."""
 return ((self.days * 86400 + self.seconds) * 10**6 +
 self.microseconds) / 10**6

 # Read-only field accessors
 @property
 def days(self):
 """days"""
 return self._days

 @property
 def seconds(self):
 """seconds"""
 return self._seconds

 @property
 def microseconds(self):
 """microseconds"""
 return self._microseconds

 def __add__(self, other):
 if isinstance(other, timedelta):
 # for CPython compatibility, we cannot use
 # our __class__ here, but need a real timedelta
 return timedelta(self._days + other._days,
 self._seconds + other._seconds,
 self._microseconds + other._microseconds)
 return NotImplemented

 __radd__ = __add__

 def __sub__(self, other):
 if isinstance(other, timedelta):
 # for CPython compatibility, we cannot use
 # our __class__ here, but need a real timedelta
 return timedelta(self._days - other._days,
 self._seconds - other._seconds,
 self._microseconds - other._microseconds)
 return NotImplemented

 def __rsub__(self, other):
 if isinstance(other, timedelta):
 return -self + other
 return NotImplemented

 def __neg__(self):
 # for CPython compatibility, we cannot use
 # our __class__ here, but need a real timedelta
 return timedelta(-self._days,
 -self._seconds,
 -self._microseconds)

 def __pos__(self):
 return self

 def __abs__(self):
 if self._days < 0:
 return -self
 else:
 return self

 def __mul__(self, other):
 if isinstance(other, int):
 # for CPython compatibility, we cannot use
 # our __class__ here, but need a real timedelta
 return timedelta(self._days * other,
 self._seconds * other,
 self._microseconds * other)
 if isinstance(other, float):
 usec = self._to_microseconds()
 a, b = other.as_integer_ratio()
 return timedelta(0, 0, _divide_and_round(usec * a, b))
 return NotImplemented

 __rmul__ = __mul__

 def _to_microseconds(self):
 return ((self._days * (24*3600) + self._seconds) * 1000000 +
 self._microseconds)

 def __floordiv__(self, other):
 if not isinstance(other, (int, timedelta)):
 return NotImplemented
 usec = self._to_microseconds()
 if isinstance(other, timedelta):
 return usec // other._to_microseconds()
 if isinstance(other, int):
 return timedelta(0, 0, usec // other)

 def __truediv__(self, other):
 if not isinstance(other, (int, float, timedelta)):
 return NotImplemented
 usec = self._to_microseconds()
 if isinstance(other, timedelta):
 return usec / other._to_microseconds()
 if isinstance(other, int):
 return timedelta(0, 0, _divide_and_round(usec, other))
 if isinstance(other, float):
 a, b = other.as_integer_ratio()
 return timedelta(0, 0, _divide_and_round(b * usec, a))

 def __mod__(self, other):
 if isinstance(other, timedelta):
 r = self._to_microseconds() % other._to_microseconds()
 return timedelta(0, 0, r)
 return NotImplemented

 def __divmod__(self, other):
 if isinstance(other, timedelta):
 q, r = divmod(self._to_microseconds(),
 other._to_microseconds())
 return q, timedelta(0, 0, r)
 return NotImplemented

 # Comparisons of timedelta objects with other.

 def __eq__(self, other):
 if isinstance(other, timedelta):
 return self._cmp(other) == 0
 else:
 return NotImplemented

 def __le__(self, other):
 if isinstance(other, timedelta):
 return self._cmp(other) <= 0
 else:
 return NotImplemented

 def __lt__(self, other):
 if isinstance(other, timedelta):
 return self._cmp(other) < 0
 else:
 return NotImplemented

 def __ge__(self, other):
 if isinstance(other, timedelta):
 return self._cmp(other) >= 0
 else:
 return NotImplemented

 def __gt__(self, other):
 if isinstance(other, timedelta):
 return self._cmp(other) > 0
 else:
 return NotImplemented

 def _cmp(self, other):
 assert isinstance(other, timedelta)
 return _cmp(self._getstate(), other._getstate())

 def __hash__(self):
 if self._hashcode == -1:
 self._hashcode = hash(self._getstate())
 return self._hashcode

 def __bool__(self):
 return (self._days != 0 or
 self._seconds != 0 or
 self._microseconds != 0)

 # Pickle support.

 def _getstate(self):
 return (self._days, self._seconds, self._microseconds)

 def __reduce__(self):
 return (self.__class__, self._getstate())

timedelta.min = timedelta(-999999999)
timedelta.max = timedelta(days=999999999, hours=23, minutes=59, seconds=59,
 microseconds=999999)
timedelta.resolution = timedelta(microseconds=1)

class date:
 """Concrete date type.

 Constructors:

 __new__()
 fromtimestamp()
 today()
 fromordinal()

 Operators:

 __repr__, __str__
 __eq__, __le__, __lt__, __ge__, __gt__, __hash__
 __add__, __radd__, __sub__ (add/radd only with timedelta arg)

 Methods:

 timetuple()
 toordinal()
 weekday()
 isoweekday(), isocalendar(), isoformat()
 ctime()
 strftime()

 Properties (readonly):
 year, month, day
 """
 __slots__ = '_year', '_month', '_day', '_hashcode'

 def __new__(cls, year, month=None, day=None):
 """Constructor.

 Arguments:

 year, month, day (required, base 1)
 """
 if (month is None and
 isinstance(year, (bytes, str)) and len(year) == 4 and
 1 <= ord(year[2:3]) <= 12):
 # Pickle support
 if isinstance(year, str):
 try:
 year = year.encode('latin1')
 except UnicodeEncodeError:
 # More informative error message.
 raise ValueError(
 "Failed to encode latin1 string when unpickling "
 "a date object. "
 "pickle.load(data, encoding='latin1') is assumed.")
 self = object.__new__(cls)
 self.__setstate(year)
 self._hashcode = -1
 return self
 year, month, day = _check_date_fields(year, month, day)
 self = object.__new__(cls)
 self._year = year
 self._month = month
 self._day = day
 self._hashcode = -1
 return self

 # Additional constructors

 @classmethod
 def fromtimestamp(cls, t):
 "Construct a date from a POSIX timestamp (like time.time())."
 y, m, d, hh, mm, ss, weekday, jday, dst = _time.localtime(t)
 return cls(y, m, d)

 @classmethod
 def today(cls):
 "Construct a date from time.time()."
 t = _time.time()
 return cls.fromtimestamp(t)

 @classmethod
 def fromordinal(cls, n):
 """Construct a date from a proleptic Gregorian ordinal.

 January 1 of year 1 is day 1. Only the year, month and day are
 non-zero in the result.
 """
 y, m, d = _ord2ymd(n)
 return cls(y, m, d)

 @classmethod
 def fromisoformat(cls, date_string):
 """Construct a date from the output of date.isoformat()."""
 if not isinstance(date_string, str):
 raise TypeError('fromisoformat: argument must be str')

 try:
 assert len(date_string) == 10
 return cls(*_parse_isoformat_date(date_string))
 except Exception:
 raise ValueError(f'Invalid isoformat string: {date_string!r}')

 # Conversions to string

 def __repr__(self):
 """Convert to formal string, for repr().

 >>> dt = datetime(2010, 1, 1)
 >>> repr(dt)
 'datetime.datetime(2010, 1, 1, 0, 0)'

 >>> dt = datetime(2010, 1, 1, tzinfo=timezone.utc)
 >>> repr(dt)
 'datetime.datetime(2010, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)'
 """
 return "%s.%s(%d, %d, %d)" % (self.__class__.__module__,
 self.__class__.__qualname__,
 self._year,
 self._month,
 self._day)
 # XXX These shouldn't depend on time.localtime(), because that
 # clips the usable dates to [1970 .. 2038). At least ctime() is
 # easily done without using strftime() -- that's better too because
 # strftime("%c", ...) is locale specific.

 def ctime(self):
 "Return ctime() style string."
 weekday = self.toordinal() % 7 or 7
 return "%s %s %2d 00:00:00 %04d" % (
 _DAYNAMES[weekday],
 _MONTHNAMES[self._month],
 self._day, self._year)

 def strftime(self, fmt):
 "Format using strftime()."
 return _wrap_strftime(self, fmt, self.timetuple())

 def __format__(self, fmt):
 if not isinstance(fmt, str):
 raise TypeError("must be str, not %s" % type(fmt).__name__)
 if len(fmt) != 0:
 return self.strftime(fmt)
 return str(self)

 def isoformat(self):
 """Return the date formatted according to ISO.

 This is 'YYYY-MM-DD'.

 References:
 - http://www.w3.org/TR/NOTE-datetime
 - http://www.cl.cam.ac.uk/~mgk25/iso-time.html
 """
 return "%04d-%02d-%02d" % (self._year, self._month, self._day)

 __str__ = isoformat

 # Read-only field accessors
 @property
 def year(self):
 """year (1-9999)"""
 return self._year

 @property
 def month(self):
 """month (1-12)"""
 return self._month

 @property
 def day(self):
 """day (1-31)"""
 return self._day

 # Standard conversions, __eq__, __le__, __lt__, __ge__, __gt__,
 # __hash__ (and helpers)

 def timetuple(self):
 "Return local time tuple compatible with time.localtime()."
 return _build_struct_time(self._year, self._month, self._day,
 0, 0, 0, -1)

 def toordinal(self):
 """Return proleptic Gregorian ordinal for the year, month and day.

 January 1 of year 1 is day 1. Only the year, month and day values
 contribute to the result.
 """
 return _ymd2ord(self._year, self._month, self._day)

 def replace(self, year=None, month=None, day=None):
 """Return a new date with new values for the specified fields."""
 if year is None:
 year = self._year
 if month is None:
 month = self._month
 if day is None:
 day = self._day
 return type(self)(year, month, day)

 # Comparisons of date objects with other.

 def __eq__(self, other):
 if isinstance(other, date):
 return self._cmp(other) == 0
 return NotImplemented

 def __le__(self, other):
 if isinstance(other, date):
 return self._cmp(other) <= 0
 return NotImplemented

 def __lt__(self, other):
 if isinstance(other, date):
 return self._cmp(other) < 0
 return NotImplemented

 def __ge__(self, other):
 if isinstance(other, date):
 return self._cmp(other) >= 0
 return NotImplemented

 def __gt__(self, other):
 if isinstance(other, date):
 return self._cmp(other) > 0
 return NotImplemented

 def _cmp(self, other):
 assert isinstance(other, date)
 y, m, d = self._year, self._month, self._day
 y2, m2, d2 = other._year, other._month, other._day
 return _cmp((y, m, d), (y2, m2, d2))

 def __hash__(self):
 "Hash."
 if self._hashcode == -1:
 self._hashcode = hash(self._getstate())
 return self._hashcode

 # Computations

 def __add__(self, other):
 "Add a date to a timedelta."
 if isinstance(other, timedelta):
 o = self.toordinal() + other.days
 if 0 < o <= _MAXORDINAL:
 return date.fromordinal(o)
 raise OverflowError("result out of range")
 return NotImplemented

 __radd__ = __add__

 def __sub__(self, other):
 """Subtract two dates, or a date and a timedelta."""
 if isinstance(other, timedelta):
 return self + timedelta(-other.days)
 if isinstance(other, date):
 days1 = self.toordinal()
 days2 = other.toordinal()
 return timedelta(days1 - days2)
 return NotImplemented

 def weekday(self):
 "Return day of the week, where Monday == 0 ... Sunday == 6."
 return (self.toordinal() + 6) % 7

 # Day-of-the-week and week-of-the-year, according to ISO

 def isoweekday(self):
 "Return day of the week, where Monday == 1 ... Sunday == 7."
 # 1-Jan-0001 is a Monday
 return self.toordinal() % 7 or 7

 def isocalendar(self):
 """Return a 3-tuple containing ISO year, week number, and weekday.

 The first ISO week of the year is the (Mon-Sun) week
 containing the year's first Thursday; everything else derives
 from that.

 The first week is 1; Monday is 1 ... Sunday is 7.

 ISO calendar algorithm taken from
 http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm
 (used with permission)
 """
 year = self._year
 week1monday = _isoweek1monday(year)
 today = _ymd2ord(self._year, self._month, self._day)
 # Internally, week and day have origin 0
 week, day = divmod(today - week1monday, 7)
 if week < 0:
 year -= 1
 week1monday = _isoweek1monday(year)
 week, day = divmod(today - week1monday, 7)
 elif week >= 52:
 if today >= _isoweek1monday(year+1):
 year += 1
 week = 0
 return year, week+1, day+1

 # Pickle support.

 def _getstate(self):
 yhi, ylo = divmod(self._year, 256)
 return bytes([yhi, ylo, self._month, self._day]),

 def __setstate(self, string):
 yhi, ylo, self._month, self._day = string
 self._year = yhi * 256 + ylo

 def __reduce__(self):
 return (self.__class__, self._getstate())

_date_class = date # so functions w/ args named "date" can get at the class

date.min = date(1, 1, 1)
date.max = date(9999, 12, 31)
date.resolution = timedelta(days=1)

class tzinfo:
 """Abstract base class for time zone info classes.

 Subclasses must override the name(), utcoffset() and dst() methods.
 """
 __slots__ = ()

 def tzname(self, dt):
 "datetime -> string name of time zone."
 raise NotImplementedError("tzinfo subclass must override tzname()")

 def utcoffset(self, dt):
 "datetime -> timedelta, positive for east of UTC, negative for west of UTC"
 raise NotImplementedError("tzinfo subclass must override utcoffset()")

 def dst(self, dt):
 """datetime -> DST offset as timedelta, positive for east of UTC.

 Return 0 if DST not in effect. utcoffset() must include the DST
 offset.
 """
 raise NotImplementedError("tzinfo subclass must override dst()")

 def fromutc(self, dt):
 "datetime in UTC -> datetime in local time."

 if not isinstance(dt, datetime):
 raise TypeError("fromutc() requires a datetime argument")
 if dt.tzinfo is not self:
 raise ValueError("dt.tzinfo is not self")

 dtoff = dt.utcoffset()
 if dtoff is None:
 raise ValueError("fromutc() requires a non-None utcoffset() "
 "result")

 # See the long comment block at the end of this file for an
 # explanation of this algorithm.
 dtdst = dt.dst()
 if dtdst is None:
 raise ValueError("fromutc() requires a non-None dst() result")
 delta = dtoff - dtdst
 if delta:
 dt += delta
 dtdst = dt.dst()
 if dtdst is None:
 raise ValueError("fromutc(): dt.dst gave inconsistent "
 "results; cannot convert")
 return dt + dtdst

 # Pickle support.

 def __reduce__(self):
 getinitargs = getattr(self, "__getinitargs__", None)
 if getinitargs:
 args = getinitargs()
 else:
 args = ()
 getstate = getattr(self, "__getstate__", None)
 if getstate:
 state = getstate()
 else:
 state = getattr(self, "__dict__", None) or None
 if state is None:
 return (self.__class__, args)
 else:
 return (self.__class__, args, state)

_tzinfo_class = tzinfo

class time:
 """Time with time zone.

 Constructors:

 __new__()

 Operators:

 __repr__, __str__
 __eq__, __le__, __lt__, __ge__, __gt__, __hash__

 Methods:

 strftime()
 isoformat()
 utcoffset()
 tzname()
 dst()

 Properties (readonly):
 hour, minute, second, microsecond, tzinfo, fold
 """
 __slots__ = '_hour', '_minute', '_second', '_microsecond', '_tzinfo', '_hashcode', '_fold'

 def __new__(cls, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0):
 """Constructor.

 Arguments:

 hour, minute (required)
 second, microsecond (default to zero)
 tzinfo (default to None)
 fold (keyword only, default to zero)
 """
 if (isinstance(hour, (bytes, str)) and len(hour) == 6 and
 ord(hour[0:1])&0x7F < 24):
 # Pickle support
 if isinstance(hour, str):
 try:
 hour = hour.encode('latin1')
 except UnicodeEncodeError:
 # More informative error message.
 raise ValueError(
 "Failed to encode latin1 string when unpickling "
 "a time object. "
 "pickle.load(data, encoding='latin1') is assumed.")
 self = object.__new__(cls)
 self.__setstate(hour, minute or None)
 self._hashcode = -1
 return self
 hour, minute, second, microsecond, fold = _check_time_fields(
 hour, minute, second, microsecond, fold)
 _check_tzinfo_arg(tzinfo)
 self = object.__new__(cls)
 self._hour = hour
 self._minute = minute
 self._second = second
 self._microsecond = microsecond
 self._tzinfo = tzinfo
 self._hashcode = -1
 self._fold = fold
 return self

 # Read-only field accessors
 @property
 def hour(self):
 """hour (0-23)"""
 return self._hour

 @property
 def minute(self):
 """minute (0-59)"""
 return self._minute

 @property
 def second(self):
 """second (0-59)"""
 return self._second

 @property
 def microsecond(self):
 """microsecond (0-999999)"""
 return self._microsecond

 @property
 def tzinfo(self):
 """timezone info object"""
 return self._tzinfo

 @property
 def fold(self):
 return self._fold

 # Standard conversions, __hash__ (and helpers)

 # Comparisons of time objects with other.

 def __eq__(self, other):
 if isinstance(other, time):
 return self._cmp(other, allow_mixed=True) == 0
 else:
 return NotImplemented

 def __le__(self, other):
 if isinstance(other, time):
 return self._cmp(other) <= 0
 else:
 return NotImplemented

 def __lt__(self, other):
 if isinstance(other, time):
 return self._cmp(other) < 0
 else:
 return NotImplemented

 def __ge__(self, other):
 if isinstance(other, time):
 return self._cmp(other) >= 0
 else:
 return NotImplemented

 def __gt__(self, other):
 if isinstance(other, time):
 return self._cmp(other) > 0
 else:
 return NotImplemented

 def _cmp(self, other, allow_mixed=False):
 assert isinstance(other, time)
 mytz = self._tzinfo
 ottz = other._tzinfo
 myoff = otoff = None

 if mytz is ottz:
 base_compare = True
 else:
 myoff = self.utcoffset()
 otoff = other.utcoffset()
 base_compare = myoff == otoff

 if base_compare:
 return _cmp((self._hour, self._minute, self._second,
 self._microsecond),
 (other._hour, other._minute, other._second,
 other._microsecond))
 if myoff is None or otoff is None:
 if allow_mixed:
 return 2 # arbitrary non-zero value
 else:
 raise TypeError("cannot compare naive and aware times")
 myhhmm = self._hour * 60 + self._minute - myoff//timedelta(minutes=1)
 othhmm = other._hour * 60 + other._minute - otoff//timedelta(minutes=1)
 return _cmp((myhhmm, self._second, self._microsecond),
 (othhmm, other._second, other._microsecond))

 def __hash__(self):
 """Hash."""
 if self._hashcode == -1:
 if self.fold:
 t = self.replace(fold=0)
 else:
 t = self
 tzoff = t.utcoffset()
 if not tzoff: # zero or None
 self._hashcode = hash(t._getstate()[0])
 else:
 h, m = divmod(timedelta(hours=self.hour, minutes=self.minute) - tzoff,
 timedelta(hours=1))
 assert not m % timedelta(minutes=1), "whole minute"
 m //= timedelta(minutes=1)
 if 0 <= h < 24:
 self._hashcode = hash(time(h, m, self.second, self.microsecond))
 else:
 self._hashcode = hash((h, m, self.second, self.microsecond))
 return self._hashcode

 # Conversion to string

 def _tzstr(self):
 """Return formatted timezone offset (+xx:xx) or an empty string."""
 off = self.utcoffset()
 return _format_offset(off)

 def __repr__(self):
 """Convert to formal string, for repr()."""
 if self._microsecond != 0:
 s = ", %d, %d" % (self._second, self._microsecond)
 elif self._second != 0:
 s = ", %d" % self._second
 else:
 s = ""
 s= "%s.%s(%d, %d%s)" % (self.__class__.__module__,
 self.__class__.__qualname__,
 self._hour, self._minute, s)
 if self._tzinfo is not None:
 assert s[-1:] == ")"
 s = s[:-1] + ", tzinfo=%r" % self._tzinfo + ")"
 if self._fold:
 assert s[-1:] == ")"
 s = s[:-1] + ", fold=1)"
 return s

 def isoformat(self, timespec='auto'):
 """Return the time formatted according to ISO.

 The full format is 'HH:MM:SS.mmmmmm+zz:zz'. By default, the fractional
 part is omitted if self.microsecond == 0.

 The optional argument timespec specifies the number of additional
 terms of the time to include.
 """
 s = _format_time(self._hour, self._minute, self._second,
 self._microsecond, timespec)
 tz = self._tzstr()
 if tz:
 s += tz
 return s

 __str__ = isoformat

 @classmethod
 def fromisoformat(cls, time_string):
 """Construct a time from the output of isoformat()."""
 if not isinstance(time_string, str):
 raise TypeError('fromisoformat: argument must be str')

 try:
 return cls(*_parse_isoformat_time(time_string))
 except Exception:
 raise ValueError(f'Invalid isoformat string: {time_string!r}')

 def strftime(self, fmt):
 """Format using strftime(). The date part of the timestamp passed
 to underlying strftime should not be used.
 """
 # The year must be >= 1000 else Python's strftime implementation
 # can raise a bogus exception.
 timetuple = (1900, 1, 1,
 self._hour, self._minute, self._second,
 0, 1, -1)
 return _wrap_strftime(self, fmt, timetuple)

 def __format__(self, fmt):
 if not isinstance(fmt, str):
 raise TypeError("must be str, not %s" % type(fmt).__name__)
 if len(fmt) != 0:
 return self.strftime(fmt)
 return str(self)

 # Timezone functions

 def utcoffset(self):
 """Return the timezone offset as timedelta, positive east of UTC
 (negative west of UTC)."""
 if self._tzinfo is None:
 return None
 offset = self._tzinfo.utcoffset(None)
 _check_utc_offset("utcoffset", offset)
 return offset

 def tzname(self):
 """Return the timezone name.

 Note that the name is 100% informational -- there's no requirement that
 it mean anything in particular. For example, "GMT", "UTC", "-500",
 "-5:00", "EDT", "US/Eastern", "America/New York" are all valid replies.
 """
 if self._tzinfo is None:
 return None
 name = self._tzinfo.tzname(None)
 _check_tzname(name)
 return name

 def dst(self):
 """Return 0 if DST is not in effect, or the DST offset (as timedelta
 positive eastward) if DST is in effect.

 This is purely informational; the DST offset has already been added to
 the UTC offset returned by utcoffset() if applicable, so there's no
 need to consult dst() unless you're interested in displaying the DST
 info.
 """
 if self._tzinfo is None:
 return None
 offset = self._tzinfo.dst(None)
 _check_utc_offset("dst", offset)
 return offset

 def replace(self, hour=None, minute=None, second=None, microsecond=None,
 tzinfo=True, *, fold=None):
 """Return a new time with new values for the specified fields."""
 if hour is None:
 hour = self.hour
 if minute is None:
 minute = self.minute
 if second is None:
 second = self.second
 if microsecond is None:
 microsecond = self.microsecond
 if tzinfo is True:
 tzinfo = self.tzinfo
 if fold is None:
 fold = self._fold
 return type(self)(hour, minute, second, microsecond, tzinfo, fold=fold)

 # Pickle support.

 def _getstate(self, protocol=3):
 us2, us3 = divmod(self._microsecond, 256)
 us1, us2 = divmod(us2, 256)
 h = self._hour
 if self._fold and protocol > 3:
 h += 128
 basestate = bytes([h, self._minute, self._second,
 us1, us2, us3])
 if self._tzinfo is None:
 return (basestate,)
 else:
 return (basestate, self._tzinfo)

 def __setstate(self, string, tzinfo):
 if tzinfo is not None and not isinstance(tzinfo, _tzinfo_class):
 raise TypeError("bad tzinfo state arg")
 h, self._minute, self._second, us1, us2, us3 = string
 if h > 127:
 self._fold = 1
 self._hour = h - 128
 else:
 self._fold = 0
 self._hour = h
 self._microsecond = (((us1 << 8) | us2) << 8) | us3
 self._tzinfo = tzinfo

 def __reduce_ex__(self, protocol):
 return (time, self._getstate(protocol))

 def __reduce__(self):
 return self.__reduce_ex__(2)

_time_class = time # so functions w/ args named "time" can get at the class

time.min = time(0, 0, 0)
time.max = time(23, 59, 59, 999999)
time.resolution = timedelta(microseconds=1)

class datetime(date):
 """datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

 The year, month and day arguments are required. tzinfo may be None, or an
 instance of a tzinfo subclass. The remaining arguments may be ints.
 """
 __slots__ = date.__slots__ + time.__slots__

 def __new__(cls, year, month=None, day=None, hour=0, minute=0, second=0,
 microsecond=0, tzinfo=None, *, fold=0):
 if (isinstance(year, (bytes, str)) and len(year) == 10 and
 1 <= ord(year[2:3])&0x7F <= 12):
 # Pickle support
 if isinstance(year, str):
 try:
 year = bytes(year, 'latin1')
 except UnicodeEncodeError:
 # More informative error message.
 raise ValueError(
 "Failed to encode latin1 string when unpickling "
 "a datetime object. "
 "pickle.load(data, encoding='latin1') is assumed.")
 self = object.__new__(cls)
 self.__setstate(year, month)
 self._hashcode = -1
 return self
 year, month, day = _check_date_fields(year, month, day)
 hour, minute, second, microsecond, fold = _check_time_fields(
 hour, minute, second, microsecond, fold)
 _check_tzinfo_arg(tzinfo)
 self = object.__new__(cls)
 self._year = year
 self._month = month
 self._day = day
 self._hour = hour
 self._minute = minute
 self._second = second
 self._microsecond = microsecond
 self._tzinfo = tzinfo
 self._hashcode = -1
 self._fold = fold
 return self

 # Read-only field accessors
 @property
 def hour(self):
 """hour (0-23)"""
 return self._hour

 @property
 def minute(self):
 """minute (0-59)"""
 return self._minute

 @property
 def second(self):
 """second (0-59)"""
 return self._second

 @property
 def microsecond(self):
 """microsecond (0-999999)"""
 return self._microsecond

 @property
 def tzinfo(self):
 """timezone info object"""
 return self._tzinfo

 @property
 def fold(self):
 return self._fold

 @classmethod
 def _fromtimestamp(cls, t, utc, tz):
 """Construct a datetime from a POSIX timestamp (like time.time()).

 A timezone info object may be passed in as well.
 """
 frac, t = _math.modf(t)
 us = round(frac * 1e6)
 if us >= 1000000:
 t += 1
 us -= 1000000
 elif us < 0:
 t -= 1
 us += 1000000

 converter = _time.gmtime if utc else _time.localtime
 y, m, d, hh, mm, ss, weekday, jday, dst = converter(t)
 ss = min(ss, 59) # clamp out leap seconds if the platform has them
 result = cls(y, m, d, hh, mm, ss, us, tz)
 if tz is None:
 # As of version 2015f max fold in IANA database is
 # 23 hours at 1969-09-30 13:00:00 in Kwajalein.
 # Let's probe 24 hours in the past to detect a transition:
 max_fold_seconds = 24 * 3600

 # On Windows localtime_s throws an OSError for negative values,
 # thus we can't perform fold detection for values of time less
 # than the max time fold. See comments in _datetimemodule's
 # version of this method for more details.
 if t < max_fold_seconds and sys.platform.startswith("win"):
 return result

 y, m, d, hh, mm, ss = converter(t - max_fold_seconds)[:6]
 probe1 = cls(y, m, d, hh, mm, ss, us, tz)
 trans = result - probe1 - timedelta(0, max_fold_seconds)
 if trans.days < 0:
 y, m, d, hh, mm, ss = converter(t + trans // timedelta(0, 1))[:6]
 probe2 = cls(y, m, d, hh, mm, ss, us, tz)
 if probe2 == result:
 result._fold = 1
 else:
 result = tz.fromutc(result)
 return result

 @classmethod
 def fromtimestamp(cls, t, tz=None):
 """Construct a datetime from a POSIX timestamp (like time.time()).

 A timezone info object may be passed in as well.
 """
 _check_tzinfo_arg(tz)

 return cls._fromtimestamp(t, tz is not None, tz)

 @classmethod
 def utcfromtimestamp(cls, t):
 """Construct a naive UTC datetime from a POSIX timestamp."""
 return cls._fromtimestamp(t, True, None)

 @classmethod
 def now(cls, tz=None):
 "Construct a datetime from time.time() and optional time zone info."
 t = _time.time()
 return cls.fromtimestamp(t, tz)

 @classmethod
 def utcnow(cls):
 "Construct a UTC datetime from time.time()."
 t = _time.time()
 return cls.utcfromtimestamp(t)

 @classmethod
 def combine(cls, date, time, tzinfo=True):
 "Construct a datetime from a given date and a given time."
 if not isinstance(date, _date_class):
 raise TypeError("date argument must be a date instance")
 if not isinstance(time, _time_class):
 raise TypeError("time argument must be a time instance")
 if tzinfo is True:
 tzinfo = time.tzinfo
 return cls(date.year, date.month, date.day,
 time.hour, time.minute, time.second, time.microsecond,
 tzinfo, fold=time.fold)

 @classmethod
 def fromisoformat(cls, date_string):
 """Construct a datetime from the output of datetime.isoformat()."""
 if not isinstance(date_string, str):
 raise TypeError('fromisoformat: argument must be str')

 # Split this at the separator
 dstr = date_string[0:10]
 tstr = date_string[11:]

 try:
 date_components = _parse_isoformat_date(dstr)
 except ValueError:
 raise ValueError(f'Invalid isoformat string: {date_string!r}')

 if tstr:
 try:
 time_components = _parse_isoformat_time(tstr)
 except ValueError:
 raise ValueError(f'Invalid isoformat string: {date_string!r}')
 else:
 time_components = [0, 0, 0, 0, None]

 return cls(*(date_components + time_components))

 def timetuple(self):
 "Return local time tuple compatible with time.localtime()."
 dst = self.dst()
 if dst is None:
 dst = -1
 elif dst:
 dst = 1
 else:
 dst = 0
 return _build_struct_time(self.year, self.month, self.day,
 self.hour, self.minute, self.second,
 dst)

 def _mktime(self):
 """Return integer POSIX timestamp."""
 epoch = datetime(1970, 1, 1)
 max_fold_seconds = 24 * 3600
 t = (self - epoch) // timedelta(0, 1)
 def local(u):
 y, m, d, hh, mm, ss = _time.localtime(u)[:6]
 return (datetime(y, m, d, hh, mm, ss) - epoch) // timedelta(0, 1)

 # Our goal is to solve t = local(u) for u.
 a = local(t) - t
 u1 = t - a
 t1 = local(u1)
 if t1 == t:
 # We found one solution, but it may not be the one we need.
 # Look for an earlier solution (if `fold` is 0), or a
 # later one (if `fold` is 1).
 u2 = u1 + (-max_fold_seconds, max_fold_seconds)[self.fold]
 b = local(u2) - u2
 if a == b:
 return u1
 else:
 b = t1 - u1
 assert a != b
 u2 = t - b
 t2 = local(u2)
 if t2 == t:
 return u2
 if t1 == t:
 return u1
 # We have found both offsets a and b, but neither t - a nor t - b is
 # a solution. This means t is in the gap.
 return (max, min)[self.fold](u1, u2)

 def timestamp(self):
 "Return POSIX timestamp as float"
 if self._tzinfo is None:
 s = self._mktime()
 return s + self.microsecond / 1e6
 else:
 return (self - _EPOCH).total_seconds()

 def utctimetuple(self):
 "Return UTC time tuple compatible with time.gmtime()."
 offset = self.utcoffset()
 if offset:
 self -= offset
 y, m, d = self.year, self.month, self.day
 hh, mm, ss = self.hour, self.minute, self.second
 return _build_struct_time(y, m, d, hh, mm, ss, 0)

 def date(self):
 "Return the date part."
 return date(self._year, self._month, self._day)

 def time(self):
 "Return the time part, with tzinfo None."
 return time(self.hour, self.minute, self.second, self.microsecond, fold=self.fold)

 def timetz(self):
 "Return the time part, with same tzinfo."
 return time(self.hour, self.minute, self.second, self.microsecond,
 self._tzinfo, fold=self.fold)

 def replace(self, year=None, month=None, day=None, hour=None,
 minute=None, second=None, microsecond=None, tzinfo=True,
 *, fold=None):
 """Return a new datetime with new values for the specified fields."""
 if year is None:
 year = self.year
 if month is None:
 month = self.month
 if day is None:
 day = self.day
 if hour is None:
 hour = self.hour
 if minute is None:
 minute = self.minute
 if second is None:
 second = self.second
 if microsecond is None:
 microsecond = self.microsecond
 if tzinfo is True:
 tzinfo = self.tzinfo
 if fold is None:
 fold = self.fold
 return type(self)(year, month, day, hour, minute, second,
 microsecond, tzinfo, fold=fold)

 def _local_timezone(self):
 if self.tzinfo is None:
 ts = self._mktime()
 else:
 ts = (self - _EPOCH) // timedelta(seconds=1)
 localtm = _time.localtime(ts)
 local = datetime(*localtm[:6])
 try:
 # Extract TZ data if available
 gmtoff = localtm.tm_gmtoff
 zone = localtm.tm_zone
 except AttributeError:
 delta = local - datetime(*_time.gmtime(ts)[:6])
 zone = _time.strftime('%Z', localtm)
 tz = timezone(delta, zone)
 else:
 tz = timezone(timedelta(seconds=gmtoff), zone)
 return tz

 def astimezone(self, tz=None):
 if tz is None:
 tz = self._local_timezone()
 elif not isinstance(tz, tzinfo):
 raise TypeError("tz argument must be an instance of tzinfo")

 mytz = self.tzinfo
 if mytz is None:
 mytz = self._local_timezone()
 myoffset = mytz.utcoffset(self)
 else:
 myoffset = mytz.utcoffset(self)
 if myoffset is None:
 mytz = self.replace(tzinfo=None)._local_timezone()
 myoffset = mytz.utcoffset(self)

 if tz is mytz:
 return self

 # Convert self to UTC, and attach the new time zone object.
 utc = (self - myoffset).replace(tzinfo=tz)

 # Convert from UTC to tz's local time.
 return tz.fromutc(utc)

 # Ways to produce a string.

 def ctime(self):
 "Return ctime() style string."
 weekday = self.toordinal() % 7 or 7
 return "%s %s %2d %02d:%02d:%02d %04d" % (
 _DAYNAMES[weekday],
 _MONTHNAMES[self._month],
 self._day,
 self._hour, self._minute, self._second,
 self._year)

 def isoformat(self, sep='T', timespec='auto'):
 """Return the time formatted according to ISO.

 The full format looks like 'YYYY-MM-DD HH:MM:SS.mmmmmm'.
 By default, the fractional part is omitted if self.microsecond == 0.

 If self.tzinfo is not None, the UTC offset is also attached, giving
 giving a full format of 'YYYY-MM-DD HH:MM:SS.mmmmmm+HH:MM'.

 Optional argument sep specifies the separator between date and
 time, default 'T'.

 The optional argument timespec specifies the number of additional
 terms of the time to include.
 """
 s = ("%04d-%02d-%02d%c" % (self._year, self._month, self._day, sep) +
 _format_time(self._hour, self._minute, self._second,
 self._microsecond, timespec))

 off = self.utcoffset()
 tz = _format_offset(off)
 if tz:
 s += tz

 return s

 def __repr__(self):
 """Convert to formal string, for repr()."""
 L = [self._year, self._month, self._day, # These are never zero
 self._hour, self._minute, self._second, self._microsecond]
 if L[-1] == 0:
 del L[-1]
 if L[-1] == 0:
 del L[-1]
 s = "%s.%s(%s)" % (self.__class__.__module__,
 self.__class__.__qualname__,
 ", ".join(map(str, L)))
 if self._tzinfo is not None:
 assert s[-1:] == ")"
 s = s[:-1] + ", tzinfo=%r" % self._tzinfo + ")"
 if self._fold:
 assert s[-1:] == ")"
 s = s[:-1] + ", fold=1)"
 return s

 def __str__(self):
 "Convert to string, for str()."
 return self.isoformat(sep=' ')

 @classmethod
 def strptime(cls, date_string, format):
 'string, format -> new datetime parsed from a string (like time.strptime()).'
 import _strptime
 return _strptime._strptime_datetime(cls, date_string, format)

 def utcoffset(self):
 """Return the timezone offset as timedelta positive east of UTC (negative west of
 UTC)."""
 if self._tzinfo is None:
 return None
 offset = self._tzinfo.utcoffset(self)
 _check_utc_offset("utcoffset", offset)
 return offset

 def tzname(self):
 """Return the timezone name.

 Note that the name is 100% informational -- there's no requirement that
 it mean anything in particular. For example, "GMT", "UTC", "-500",
 "-5:00", "EDT", "US/Eastern", "America/New York" are all valid replies.
 """
 if self._tzinfo is None:
 return None
 name = self._tzinfo.tzname(self)
 _check_tzname(name)
 return name

 def dst(self):
 """Return 0 if DST is not in effect, or the DST offset (as timedelta
 positive eastward) if DST is in effect.

 This is purely informational; the DST offset has already been added to
 the UTC offset returned by utcoffset() if applicable, so there's no
 need to consult dst() unless you're interested in displaying the DST
 info.
 """
 if self._tzinfo is None:
 return None
 offset = self._tzinfo.dst(self)
 _check_utc_offset("dst", offset)
 return offset

 # Comparisons of datetime objects with other.

 def __eq__(self, other):
 if isinstance(other, datetime):
 return self._cmp(other, allow_mixed=True) == 0
 elif not isinstance(other, date):
 return NotImplemented
 else:
 return False

 def __le__(self, other):
 if isinstance(other, datetime):
 return self._cmp(other) <= 0
 elif not isinstance(other, date):
 return NotImplemented
 else:
 _cmperror(self, other)

 def __lt__(self, other):
 if isinstance(other, datetime):
 return self._cmp(other) < 0
 elif not isinstance(other, date):
 return NotImplemented
 else:
 _cmperror(self, other)

 def __ge__(self, other):
 if isinstance(other, datetime):
 return self._cmp(other) >= 0
 elif not isinstance(other, date):
 return NotImplemented
 else:
 _cmperror(self, other)

 def __gt__(self, other):
 if isinstance(other, datetime):
 return self._cmp(other) > 0
 elif not isinstance(other, date):
 return NotImplemented
 else:
 _cmperror(self, other)

 def _cmp(self, other, allow_mixed=False):
 assert isinstance(other, datetime)
 mytz = self._tzinfo
 ottz = other._tzinfo
 myoff = otoff = None

 if mytz is ottz:
 base_compare = True
 else:
 myoff = self.utcoffset()
 otoff = other.utcoffset()
 # Assume that allow_mixed means that we are called from __eq__
 if allow_mixed:
 if myoff != self.replace(fold=not self.fold).utcoffset():
 return 2
 if otoff != other.replace(fold=not other.fold).utcoffset():
 return 2
 base_compare = myoff == otoff

 if base_compare:
 return _cmp((self._year, self._month, self._day,
 self._hour, self._minute, self._second,
 self._microsecond),
 (other._year, other._month, other._day,
 other._hour, other._minute, other._second,
 other._microsecond))
 if myoff is None or otoff is None:
 if allow_mixed:
 return 2 # arbitrary non-zero value
 else:
 raise TypeError("cannot compare naive and aware datetimes")
 # XXX What follows could be done more efficiently...
 diff = self - other # this will take offsets into account
 if diff.days < 0:
 return -1
 return diff and 1 or 0

 def __add__(self, other):
 "Add a datetime and a timedelta."
 if not isinstance(other, timedelta):
 return NotImplemented
 delta = timedelta(self.toordinal(),
 hours=self._hour,
 minutes=self._minute,
 seconds=self._second,
 microseconds=self._microsecond)
 delta += other
 hour, rem = divmod(delta.seconds, 3600)
 minute, second = divmod(rem, 60)
 if 0 < delta.days <= _MAXORDINAL:
 return datetime.combine(date.fromordinal(delta.days),
 time(hour, minute, second,
 delta.microseconds,
 tzinfo=self._tzinfo))
 raise OverflowError("result out of range")

 __radd__ = __add__

 def __sub__(self, other):
 "Subtract two datetimes, or a datetime and a timedelta."
 if not isinstance(other, datetime):
 if isinstance(other, timedelta):
 return self + -other
 return NotImplemented

 days1 = self.toordinal()
 days2 = other.toordinal()
 secs1 = self._second + self._minute * 60 + self._hour * 3600
 secs2 = other._second + other._minute * 60 + other._hour * 3600
 base = timedelta(days1 - days2,
 secs1 - secs2,
 self._microsecond - other._microsecond)
 if self._tzinfo is other._tzinfo:
 return base
 myoff = self.utcoffset()
 otoff = other.utcoffset()
 if myoff == otoff:
 return base
 if myoff is None or otoff is None:
 raise TypeError("cannot mix naive and timezone-aware time")
 return base + otoff - myoff

 def __hash__(self):
 if self._hashcode == -1:
 if self.fold:
 t = self.replace(fold=0)
 else:
 t = self
 tzoff = t.utcoffset()
 if tzoff is None:
 self._hashcode = hash(t._getstate()[0])
 else:
 days = _ymd2ord(self.year, self.month, self.day)
 seconds = self.hour * 3600 + self.minute * 60 + self.second
 self._hashcode = hash(timedelta(days, seconds, self.microsecond) - tzoff)
 return self._hashcode

 # Pickle support.

 def _getstate(self, protocol=3):
 yhi, ylo = divmod(self._year, 256)
 us2, us3 = divmod(self._microsecond, 256)
 us1, us2 = divmod(us2, 256)
 m = self._month
 if self._fold and protocol > 3:
 m += 128
 basestate = bytes([yhi, ylo, m, self._day,
 self._hour, self._minute, self._second,
 us1, us2, us3])
 if self._tzinfo is None:
 return (basestate,)
 else:
 return (basestate, self._tzinfo)

 def __setstate(self, string, tzinfo):
 if tzinfo is not None and not isinstance(tzinfo, _tzinfo_class):
 raise TypeError("bad tzinfo state arg")
 (yhi, ylo, m, self._day, self._hour,
 self._minute, self._second, us1, us2, us3) = string
 if m > 127:
 self._fold = 1
 self._month = m - 128
 else:
 self._fold = 0
 self._month = m
 self._year = yhi * 256 + ylo
 self._microsecond = (((us1 << 8) | us2) << 8) | us3
 self._tzinfo = tzinfo

 def __reduce_ex__(self, protocol):
 return (self.__class__, self._getstate(protocol))

 def __reduce__(self):
 return self.__reduce_ex__(2)

datetime.min = datetime(1, 1, 1)
datetime.max = datetime(9999, 12, 31, 23, 59, 59, 999999)
datetime.resolution = timedelta(microseconds=1)

def _isoweek1monday(year):
 # Helper to calculate the day number of the Monday starting week 1
 # XXX This could be done more efficiently
 THURSDAY = 3
 firstday = _ymd2ord(year, 1, 1)
 firstweekday = (firstday + 6) % 7 # See weekday() above
 week1monday = firstday - firstweekday
 if firstweekday > THURSDAY:
 week1monday += 7
 return week1monday

class timezone(tzinfo):
 __slots__ = '_offset', '_name'

 # Sentinel value to disallow None
 _Omitted = object()
 def __new__(cls, offset, name=_Omitted):
 if not isinstance(offset, timedelta):
 raise TypeError("offset must be a timedelta")
 if name is cls._Omitted:
 if not offset:
 return cls.utc
 name = None
 elif not isinstance(name, str):
 raise TypeError("name must be a string")
 if not cls._minoffset <= offset <= cls._maxoffset:
 raise ValueError("offset must be a timedelta "
 "strictly between -timedelta(hours=24) and "
 "timedelta(hours=24).")
 return cls._create(offset, name)

 @classmethod
 def _create(cls, offset, name=None):
 self = tzinfo.__new__(cls)
 self._offset = offset
 self._name = name
 return self

 def __getinitargs__(self):
 """pickle support"""
 if self._name is None:
 return (self._offset,)
 return (self._offset, self._name)

 def __eq__(self, other):
 if isinstance(other, timezone):
 return self._offset == other._offset
 return NotImplemented

 def __hash__(self):
 return hash(self._offset)

 def __repr__(self):
 """Convert to formal string, for repr().

 >>> tz = timezone.utc
 >>> repr(tz)
 'datetime.timezone.utc'
 >>> tz = timezone(timedelta(hours=-5), 'EST')
 >>> repr(tz)
 "datetime.timezone(datetime.timedelta(-1, 68400), 'EST')"
 """
 if self is self.utc:
 return 'datetime.timezone.utc'
 if self._name is None:
 return "%s.%s(%r)" % (self.__class__.__module__,
 self.__class__.__qualname__,
 self._offset)
 return "%s.%s(%r, %r)" % (self.__class__.__module__,
 self.__class__.__qualname__,
 self._offset, self._name)

 def __str__(self):
 return self.tzname(None)

 def utcoffset(self, dt):
 if isinstance(dt, datetime) or dt is None:
 return self._offset
 raise TypeError("utcoffset() argument must be a datetime instance"
 " or None")

 def tzname(self, dt):
 if isinstance(dt, datetime) or dt is None:
 if self._name is None:
 return self._name_from_offset(self._offset)
 return self._name
 raise TypeError("tzname() argument must be a datetime instance"
 " or None")

 def dst(self, dt):
 if isinstance(dt, datetime) or dt is None:
 return None
 raise TypeError("dst() argument must be a datetime instance"
 " or None")

 def fromutc(self, dt):
 if isinstance(dt, datetime):
 if dt.tzinfo is not self:
 raise ValueError("fromutc: dt.tzinfo "
 "is not self")
 return dt + self._offset
 raise TypeError("fromutc() argument must be a datetime instance"
 " or None")

 _maxoffset = timedelta(hours=24, microseconds=-1)
 _minoffset = -_maxoffset

 @staticmethod
 def _name_from_offset(delta):
 if not delta:
 return 'UTC'
 if delta < timedelta(0):
 sign = '-'
 delta = -delta
 else:
 sign = '+'
 hours, rest = divmod(delta, timedelta(hours=1))
 minutes, rest = divmod(rest, timedelta(minutes=1))
 seconds = rest.seconds
 microseconds = rest.microseconds
 if microseconds:
 return (f'UTC{sign}{hours:02d}:{minutes:02d}:{seconds:02d}'
 f'.{microseconds:06d}')
 if seconds:
 return f'UTC{sign}{hours:02d}:{minutes:02d}:{seconds:02d}'
 return f'UTC{sign}{hours:02d}:{minutes:02d}'

timezone.utc = timezone._create(timedelta(0))
bpo-37642: These attributes are rounded to the nearest minute for backwards
compatibility, even though the constructor will accept a wider range of
values. This may change in the future.
timezone.min = timezone._create(-timedelta(hours=23, minutes=59))
timezone.max = timezone._create(timedelta(hours=23, minutes=59))
_EPOCH = datetime(1970, 1, 1, tzinfo=timezone.utc)

Some time zone algebra. For a datetime x, let
x.n = x stripped of its timezone -- its naive time.
x.o = x.utcoffset(), and assuming that doesn't raise an exception or
return None
x.d = x.dst(), and assuming that doesn't raise an exception or
return None
x.s = x's standard offset, x.o - x.d
#
Now some derived rules, where k is a duration (timedelta).
#
1. x.o = x.s + x.d
This follows from the definition of x.s.
#
2. If x and y have the same tzinfo member, x.s = y.s.
This is actually a requirement, an assumption we need to make about
sane tzinfo classes.
#
3. The naive UTC time corresponding to x is x.n - x.o.
This is again a requirement for a sane tzinfo class.
#
4. (x+k).s = x.s
This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
#
5. (x+k).n = x.n + k
Again follows from how arithmetic is defined.
#
Now we can explain tz.fromutc(x). Let's assume it's an interesting case
(meaning that the various tzinfo methods exist, and don't blow up or return
None when called).
#
The function wants to return a datetime y with timezone tz, equivalent to x.
x is already in UTC.
#
By #3, we want
#
y.n - y.o = x.n [1]
#
The algorithm starts by attaching tz to x.n, and calling that y. So
x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
becomes true; in effect, we want to solve [2] for k:
#
(y+k).n - (y+k).o = x.n [2]
#
By #1, this is the same as
#
(y+k).n - ((y+k).s + (y+k).d) = x.n [3]
#
By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
Substituting that into [3],
#
x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
k - (y+k).s - (y+k).d = 0; rearranging,
k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
k = y.s - (y+k).d
#
On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
approximate k by ignoring the (y+k).d term at first. Note that k can't be
very large, since all offset-returning methods return a duration of magnitude
less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
be 0, so ignoring it has no consequence then.
#
In any case, the new value is
#
z = y + y.s [4]
#
It's helpful to step back at look at [4] from a higher level: it's simply
mapping from UTC to tz's standard time.
#
At this point, if
#
z.n - z.o = x.n [5]
#
we have an equivalent time, and are almost done. The insecurity here is
at the start of daylight time. Picture US Eastern for concreteness. The wall
time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
sense then. The docs ask that an Eastern tzinfo class consider such a time to
be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
on the day DST starts. We want to return the 1:MM EST spelling because that's
the only spelling that makes sense on the local wall clock.
#
In fact, if [5] holds at this point, we do have the standard-time spelling,
but that takes a bit of proof. We first prove a stronger result. What's the
difference between the LHS and RHS of [5]? Let
#
diff = x.n - (z.n - z.o) [6]
#
Now
z.n = by [4]
(y + y.s).n = by #5
y.n + y.s = since y.n = x.n
x.n + y.s = since z and y are have the same tzinfo member,
y.s = z.s by #2
x.n + z.s
#
Plugging that back into [6] gives
#
diff =
x.n - ((x.n + z.s) - z.o) = expanding
x.n - x.n - z.s + z.o = cancelling
- z.s + z.o = by #2
z.d
#
So diff = z.d.
#
If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
spelling we wanted in the endcase described above. We're done. Contrarily,
if z.d = 0, then we have a UTC equivalent, and are also done.
#
If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
add to z (in effect, z is in tz's standard time, and we need to shift the
local clock into tz's daylight time).
#
Let
#
z' = z + z.d = z + diff [7]
#
and we can again ask whether
#
z'.n - z'.o = x.n [8]
#
If so, we're done. If not, the tzinfo class is insane, according to the
assumptions we've made. This also requires a bit of proof. As before, let's
compute the difference between the LHS and RHS of [8] (and skipping some of
the justifications for the kinds of substitutions we've done several times
already):
#
diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
x.n - (z.n + diff - z'.o) = replacing diff via [6]
x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
- z.n + z.n - z.o + z'.o = cancel z.n
- z.o + z'.o = #1 twice
-z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
z'.d - z.d
#
So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
we've found the UTC-equivalent so are done. In fact, we stop with [7] and
return z', not bothering to compute z'.d.
#
How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
would have to change the result dst() returns: we start in DST, and moving
a little further into it takes us out of DST.
#
There isn't a sane case where this can happen. The closest it gets is at
the end of DST, where there's an hour in UTC with no spelling in a hybrid
tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
UTC) because the docs insist on that, but 0:MM is taken as being in daylight
time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
standard time. Since that's what the local clock *does*, we want to map both
UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
in local time, but so it goes -- it's the way the local clock works.
#
When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
(correctly) concludes that z' is not UTC-equivalent to x.
#
Because we know z.d said z was in daylight time (else [5] would have held and
we would have stopped then), and we know z.d != z'.d (else [8] would have held
and we have stopped then), and there are only 2 possible values dst() can
return in Eastern, it follows that z'.d must be 0 (which it is in the example,
but the reasoning doesn't depend on the example -- it depends on there being
two possible dst() outcomes, one zero and the other non-zero). Therefore
z' must be in standard time, and is the spelling we want in this case.
#
Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
concerned (because it takes z' as being in standard time rather than the
daylight time we intend here), but returning it gives the real-life "local
clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
tz.
#
When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
the 1:MM standard time spelling we want.
#
So how can this break? One of the assumptions must be violated. Two
possibilities:
#
1) [2] effectively says that y.s is invariant across all y belong to a given
time zone. This isn't true if, for political reasons or continental drift,
a region decides to change its base offset from UTC.
#
2) There may be versions of "double daylight" time where the tail end of
the analysis gives up a step too early. I haven't thought about that
enough to say.
#
In any case, it's clear that the default fromutc() is strong enough to handle
"almost all" time zones: so long as the standard offset is invariant, it
doesn't matter if daylight time transition points change from year to year, or
if daylight time is skipped in some years; it doesn't matter how large or
small dst() may get within its bounds; and it doesn't even matter if some
perverse time zone returns a negative dst()). So a breaking case must be
pretty bizarre, and a tzinfo subclass can override fromutc() if it is.

try:
 from _datetime import *
except ImportError:
 pass
else:
 # Clean up unused names
 del (_DAYNAMES, _DAYS_BEFORE_MONTH, _DAYS_IN_MONTH, _DI100Y, _DI400Y,
 _DI4Y, _EPOCH, _MAXORDINAL, _MONTHNAMES, _build_struct_time,
 _check_date_fields, _check_int_field, _check_time_fields,
 _check_tzinfo_arg, _check_tzname, _check_utc_offset, _cmp, _cmperror,
 _date_class, _days_before_month, _days_before_year, _days_in_month,
 _format_time, _format_offset, _is_leap, _isoweek1monday, _math,
 _ord2ymd, _time, _time_class, _tzinfo_class, _wrap_strftime, _ymd2ord,
 _divide_and_round, _parse_isoformat_date, _parse_isoformat_time,
 _parse_hh_mm_ss_ff)
 # XXX Since import * above excludes names that start with _,
 # docstring does not get overwritten. In the future, it may be
 # appropriate to maintain a single module level docstring and
 # remove the following line.
 from _datetime import __doc__

 Source code for decimal

try:
 from _decimal import *
 from _decimal import __doc__
 from _decimal import __version__
 from _decimal import __libmpdec_version__
except ImportError:
 from _pydecimal import *
 from _pydecimal import __doc__
 from _pydecimal import __version__
 from _pydecimal import __libmpdec_version__

 All modules for which code is available

	datetime

	decimal

	eventsourcing.application

	eventsourcing.cipher

	eventsourcing.compressor

	eventsourcing.domain

	eventsourcing.interface

	eventsourcing.persistence

	eventsourcing.popo

	eventsourcing.postgres

	eventsourcing.sqlite

	eventsourcing.system

	eventsourcing.utils

	uuid

 Source code for uuid

r"""UUID objects (universally unique identifiers) according to RFC 4122.

This module provides immutable UUID objects (class UUID) and the functions
uuid1(), uuid3(), uuid4(), uuid5() for generating version 1, 3, 4, and 5
UUIDs as specified in RFC 4122.

If all you want is a unique ID, you should probably call uuid1() or uuid4().
Note that uuid1() may compromise privacy since it creates a UUID containing
the computer's network address. uuid4() creates a random UUID.

Typical usage:

 >>> import uuid

 # make a UUID based on the host ID and current time
 >>> uuid.uuid1() # doctest: +SKIP
 UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

 # make a UUID using an MD5 hash of a namespace UUID and a name
 >>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
 UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

 # make a random UUID
 >>> uuid.uuid4() # doctest: +SKIP
 UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

 # make a UUID using a SHA-1 hash of a namespace UUID and a name
 >>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
 UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

 # make a UUID from a string of hex digits (braces and hyphens ignored)
 >>> x = uuid.UUID('{00010203-0405-0607-0809-0a0b0c0d0e0f}')

 # convert a UUID to a string of hex digits in standard form
 >>> str(x)
 '00010203-0405-0607-0809-0a0b0c0d0e0f'

 # get the raw 16 bytes of the UUID
 >>> x.bytes
 b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f'

 # make a UUID from a 16-byte string
 >>> uuid.UUID(bytes=x.bytes)
 UUID('00010203-0405-0607-0809-0a0b0c0d0e0f')
"""

import os
import sys

from enum import Enum

__author__ = 'Ka-Ping Yee <ping@zesty.ca>'

RESERVED_NCS, RFC_4122, RESERVED_MICROSOFT, RESERVED_FUTURE = [
 'reserved for NCS compatibility', 'specified in RFC 4122',
 'reserved for Microsoft compatibility', 'reserved for future definition']

int_ = int # The built-in int type
bytes_ = bytes # The built-in bytes type

class SafeUUID(Enum):
 safe = 0
 unsafe = -1
 unknown = None

class UUID:
 """Instances of the UUID class represent UUIDs as specified in RFC 4122.
 UUID objects are immutable, hashable, and usable as dictionary keys.
 Converting a UUID to a string with str() yields something in the form
 '12345678-1234-1234-1234-123456789abc'. The UUID constructor accepts
 five possible forms: a similar string of hexadecimal digits, or a tuple
 of six integer fields (with 32-bit, 16-bit, 16-bit, 8-bit, 8-bit, and
 48-bit values respectively) as an argument named 'fields', or a string
 of 16 bytes (with all the integer fields in big-endian order) as an
 argument named 'bytes', or a string of 16 bytes (with the first three
 fields in little-endian order) as an argument named 'bytes_le', or a
 single 128-bit integer as an argument named 'int'.

 UUIDs have these read-only attributes:

 bytes the UUID as a 16-byte string (containing the six
 integer fields in big-endian byte order)

 bytes_le the UUID as a 16-byte string (with time_low, time_mid,
 and time_hi_version in little-endian byte order)

 fields a tuple of the six integer fields of the UUID,
 which are also available as six individual attributes
 and two derived attributes:

 time_low the first 32 bits of the UUID
 time_mid the next 16 bits of the UUID
 time_hi_version the next 16 bits of the UUID
 clock_seq_hi_variant the next 8 bits of the UUID
 clock_seq_low the next 8 bits of the UUID
 node the last 48 bits of the UUID

 time the 60-bit timestamp
 clock_seq the 14-bit sequence number

 hex the UUID as a 32-character hexadecimal string

 int the UUID as a 128-bit integer

 urn the UUID as a URN as specified in RFC 4122

 variant the UUID variant (one of the constants RESERVED_NCS,
 RFC_4122, RESERVED_MICROSOFT, or RESERVED_FUTURE)

 version the UUID version number (1 through 5, meaningful only
 when the variant is RFC_4122)

 is_safe An enum indicating whether the UUID has been generated in
 a way that is safe for multiprocessing applications, via
 uuid_generate_time_safe(3).
 """

 def __init__(self, hex=None, bytes=None, bytes_le=None, fields=None,
 int=None, version=None,
 *, is_safe=SafeUUID.unknown):
 r"""Create a UUID from either a string of 32 hexadecimal digits,
 a string of 16 bytes as the 'bytes' argument, a string of 16 bytes
 in little-endian order as the 'bytes_le' argument, a tuple of six
 integers (32-bit time_low, 16-bit time_mid, 16-bit time_hi_version,
 8-bit clock_seq_hi_variant, 8-bit clock_seq_low, 48-bit node) as
 the 'fields' argument, or a single 128-bit integer as the 'int'
 argument. When a string of hex digits is given, curly braces,
 hyphens, and a URN prefix are all optional. For example, these
 expressions all yield the same UUID:

 UUID('{12345678-1234-5678-1234-567812345678}')
 UUID('12345678123456781234567812345678')
 UUID('urn:uuid:12345678-1234-5678-1234-567812345678')
 UUID(bytes='\x12\x34\x56\x78'*4)
 UUID(bytes_le='\x78\x56\x34\x12\x34\x12\x78\x56' +
 '\x12\x34\x56\x78\x12\x34\x56\x78')
 UUID(fields=(0x12345678, 0x1234, 0x5678, 0x12, 0x34, 0x567812345678))
 UUID(int=0x12345678123456781234567812345678)

 Exactly one of 'hex', 'bytes', 'bytes_le', 'fields', or 'int' must
 be given. The 'version' argument is optional; if given, the resulting
 UUID will have its variant and version set according to RFC 4122,
 overriding the given 'hex', 'bytes', 'bytes_le', 'fields', or 'int'.

 is_safe is an enum exposed as an attribute on the instance. It
 indicates whether the UUID has been generated in a way that is safe
 for multiprocessing applications, via uuid_generate_time_safe(3).
 """

 if [hex, bytes, bytes_le, fields, int].count(None) != 4:
 raise TypeError('one of the hex, bytes, bytes_le, fields, '
 'or int arguments must be given')
 if hex is not None:
 hex = hex.replace('urn:', '').replace('uuid:', '')
 hex = hex.strip('{}').replace('-', '')
 if len(hex) != 32:
 raise ValueError('badly formed hexadecimal UUID string')
 int = int_(hex, 16)
 if bytes_le is not None:
 if len(bytes_le) != 16:
 raise ValueError('bytes_le is not a 16-char string')
 bytes = (bytes_le[4-1::-1] + bytes_le[6-1:4-1:-1] +
 bytes_le[8-1:6-1:-1] + bytes_le[8:])
 if bytes is not None:
 if len(bytes) != 16:
 raise ValueError('bytes is not a 16-char string')
 assert isinstance(bytes, bytes_), repr(bytes)
 int = int_.from_bytes(bytes, byteorder='big')
 if fields is not None:
 if len(fields) != 6:
 raise ValueError('fields is not a 6-tuple')
 (time_low, time_mid, time_hi_version,
 clock_seq_hi_variant, clock_seq_low, node) = fields
 if not 0 <= time_low < 1<<32:
 raise ValueError('field 1 out of range (need a 32-bit value)')
 if not 0 <= time_mid < 1<<16:
 raise ValueError('field 2 out of range (need a 16-bit value)')
 if not 0 <= time_hi_version < 1<<16:
 raise ValueError('field 3 out of range (need a 16-bit value)')
 if not 0 <= clock_seq_hi_variant < 1<<8:
 raise ValueError('field 4 out of range (need an 8-bit value)')
 if not 0 <= clock_seq_low < 1<<8:
 raise ValueError('field 5 out of range (need an 8-bit value)')
 if not 0 <= node < 1<<48:
 raise ValueError('field 6 out of range (need a 48-bit value)')
 clock_seq = (clock_seq_hi_variant << 8) | clock_seq_low
 int = ((time_low << 96) | (time_mid << 80) |
 (time_hi_version << 64) | (clock_seq << 48) | node)
 if int is not None:
 if not 0 <= int < 1<<128:
 raise ValueError('int is out of range (need a 128-bit value)')
 if version is not None:
 if not 1 <= version <= 5:
 raise ValueError('illegal version number')
 # Set the variant to RFC 4122.
 int &= ~(0xc000 << 48)
 int |= 0x8000 << 48
 # Set the version number.
 int &= ~(0xf000 << 64)
 int |= version << 76
 self.__dict__['int'] = int
 self.__dict__['is_safe'] = is_safe

 def __getstate__(self):
 state = self.__dict__.copy()
 if self.is_safe != SafeUUID.unknown:
 # is_safe is a SafeUUID instance. Return just its value, so that
 # it can be un-pickled in older Python versions without SafeUUID.
 state['is_safe'] = self.is_safe.value
 else:
 # omit is_safe when it is "unknown"
 del state['is_safe']
 return state

 def __setstate__(self, state):
 self.__dict__.update(state)
 # is_safe was added in 3.7; it is also omitted when it is "unknown"
 self.__dict__['is_safe'] = (
 SafeUUID(state['is_safe'])
 if 'is_safe' in state else SafeUUID.unknown
)

 def __eq__(self, other):
 if isinstance(other, UUID):
 return self.int == other.int
 return NotImplemented

 # Q. What's the value of being able to sort UUIDs?
 # A. Use them as keys in a B-Tree or similar mapping.

 def __lt__(self, other):
 if isinstance(other, UUID):
 return self.int < other.int
 return NotImplemented

 def __gt__(self, other):
 if isinstance(other, UUID):
 return self.int > other.int
 return NotImplemented

 def __le__(self, other):
 if isinstance(other, UUID):
 return self.int <= other.int
 return NotImplemented

 def __ge__(self, other):
 if isinstance(other, UUID):
 return self.int >= other.int
 return NotImplemented

 def __hash__(self):
 return hash(self.int)

 def __int__(self):
 return self.int

 def __repr__(self):
 return '%s(%r)' % (self.__class__.__name__, str(self))

 def __setattr__(self, name, value):
 raise TypeError('UUID objects are immutable')

 def __str__(self):
 hex = '%032x' % self.int
 return '%s-%s-%s-%s-%s' % (
 hex[:8], hex[8:12], hex[12:16], hex[16:20], hex[20:])

 @property
 def bytes(self):
 return self.int.to_bytes(16, 'big')

 @property
 def bytes_le(self):
 bytes = self.bytes
 return (bytes[4-1::-1] + bytes[6-1:4-1:-1] + bytes[8-1:6-1:-1] +
 bytes[8:])

 @property
 def fields(self):
 return (self.time_low, self.time_mid, self.time_hi_version,
 self.clock_seq_hi_variant, self.clock_seq_low, self.node)

 @property
 def time_low(self):
 return self.int >> 96

 @property
 def time_mid(self):
 return (self.int >> 80) & 0xffff

 @property
 def time_hi_version(self):
 return (self.int >> 64) & 0xffff

 @property
 def clock_seq_hi_variant(self):
 return (self.int >> 56) & 0xff

 @property
 def clock_seq_low(self):
 return (self.int >> 48) & 0xff

 @property
 def time(self):
 return (((self.time_hi_version & 0x0fff) << 48) |
 (self.time_mid << 32) | self.time_low)

 @property
 def clock_seq(self):
 return (((self.clock_seq_hi_variant & 0x3f) << 8) |
 self.clock_seq_low)

 @property
 def node(self):
 return self.int & 0xffffffffffff

 @property
 def hex(self):
 return '%032x' % self.int

 @property
 def urn(self):
 return 'urn:uuid:' + str(self)

 @property
 def variant(self):
 if not self.int & (0x8000 << 48):
 return RESERVED_NCS
 elif not self.int & (0x4000 << 48):
 return RFC_4122
 elif not self.int & (0x2000 << 48):
 return RESERVED_MICROSOFT
 else:
 return RESERVED_FUTURE

 @property
 def version(self):
 # The version bits are only meaningful for RFC 4122 UUIDs.
 if self.variant == RFC_4122:
 return int((self.int >> 76) & 0xf)

def _popen(command, *args):
 import os, shutil, subprocess
 executable = shutil.which(command)
 if executable is None:
 path = os.pathsep.join(('/sbin', '/usr/sbin'))
 executable = shutil.which(command, path=path)
 if executable is None:
 return None
 # LC_ALL=C to ensure English output, stderr=DEVNULL to prevent output
 # on stderr (Note: we don't have an example where the words we search
 # for are actually localized, but in theory some system could do so.)
 env = dict(os.environ)
 env['LC_ALL'] = 'C'
 proc = subprocess.Popen((executable,) + args,
 stdout=subprocess.PIPE,
 stderr=subprocess.DEVNULL,
 env=env)
 return proc

For MAC (a.k.a. IEEE 802, or EUI-48) addresses, the second least significant
bit of the first octet signifies whether the MAC address is universally (0)
or locally (1) administered. Network cards from hardware manufacturers will
always be universally administered to guarantee global uniqueness of the MAC
address, but any particular machine may have other interfaces which are
locally administered. An example of the latter is the bridge interface to
the Touch Bar on MacBook Pros.
#
This bit works out to be the 42nd bit counting from 1 being the least
significant, or 1<<41. We'll prefer universally administered MAC addresses
over locally administered ones since the former are globally unique, but
we'll return the first of the latter found if that's all the machine has.
#
See https://en.wikipedia.org/wiki/MAC_address#Universal_vs._local

def _is_universal(mac):
 return not (mac & (1 << 41))

def _find_mac(command, args, hw_identifiers, get_index):
 first_local_mac = None
 try:
 proc = _popen(command, *args.split())
 if not proc:
 return None
 with proc:
 for line in proc.stdout:
 words = line.lower().rstrip().split()
 for i in range(len(words)):
 if words[i] in hw_identifiers:
 try:
 word = words[get_index(i)]
 mac = int(word.replace(b':', b''), 16)
 if _is_universal(mac):
 return mac
 first_local_mac = first_local_mac or mac
 except (ValueError, IndexError):
 # Virtual interfaces, such as those provided by
 # VPNs, do not have a colon-delimited MAC address
 # as expected, but a 16-byte HWAddr separated by
 # dashes. These should be ignored in favor of a
 # real MAC address
 pass
 except OSError:
 pass
 return first_local_mac or None

def _ifconfig_getnode():
 """Get the hardware address on Unix by running ifconfig."""
 # This works on Linux ('' or '-a'), Tru64 ('-av'), but not all Unixes.
 keywords = (b'hwaddr', b'ether', b'address:', b'lladdr')
 for args in ('', '-a', '-av'):
 mac = _find_mac('ifconfig', args, keywords, lambda i: i+1)
 if mac:
 return mac
 return None

def _ip_getnode():
 """Get the hardware address on Unix by running ip."""
 # This works on Linux with iproute2.
 mac = _find_mac('ip', 'link', [b'link/ether'], lambda i: i+1)
 if mac:
 return mac
 return None

def _arp_getnode():
 """Get the hardware address on Unix by running arp."""
 import os, socket
 try:
 ip_addr = socket.gethostbyname(socket.gethostname())
 except OSError:
 return None

 # Try getting the MAC addr from arp based on our IP address (Solaris).
 mac = _find_mac('arp', '-an', [os.fsencode(ip_addr)], lambda i: -1)
 if mac:
 return mac

 # This works on OpenBSD
 mac = _find_mac('arp', '-an', [os.fsencode(ip_addr)], lambda i: i+1)
 if mac:
 return mac

 # This works on Linux, FreeBSD and NetBSD
 mac = _find_mac('arp', '-an', [os.fsencode('(%s)' % ip_addr)],
 lambda i: i+2)
 # Return None instead of 0.
 if mac:
 return mac
 return None

def _lanscan_getnode():
 """Get the hardware address on Unix by running lanscan."""
 # This might work on HP-UX.
 return _find_mac('lanscan', '-ai', [b'lan0'], lambda i: 0)

def _netstat_getnode():
 """Get the hardware address on Unix by running netstat."""
 # This might work on AIX, Tru64 UNIX.
 first_local_mac = None
 try:
 proc = _popen('netstat', '-ia')
 if not proc:
 return None
 with proc:
 words = proc.stdout.readline().rstrip().split()
 try:
 i = words.index(b'Address')
 except ValueError:
 return None
 for line in proc.stdout:
 try:
 words = line.rstrip().split()
 word = words[i]
 if len(word) == 17 and word.count(b':') == 5:
 mac = int(word.replace(b':', b''), 16)
 if _is_universal(mac):
 return mac
 first_local_mac = first_local_mac or mac
 except (ValueError, IndexError):
 pass
 except OSError:
 pass
 return first_local_mac or None

def _ipconfig_getnode():
 """Get the hardware address on Windows by running ipconfig.exe."""
 import os, re, subprocess
 first_local_mac = None
 dirs = ['', r'c:\windows\system32', r'c:\winnt\system32']
 try:
 import ctypes
 buffer = ctypes.create_string_buffer(300)
 ctypes.windll.kernel32.GetSystemDirectoryA(buffer, 300)
 dirs.insert(0, buffer.value.decode('mbcs'))
 except:
 pass
 for dir in dirs:
 try:
 proc = subprocess.Popen([os.path.join(dir, 'ipconfig'), '/all'],
 stdout=subprocess.PIPE,
 encoding="oem")
 except OSError:
 continue
 with proc:
 for line in proc.stdout:
 value = line.split(':')[-1].strip().lower()
 if re.fullmatch('(?:[0-9a-f][0-9a-f]-){5}[0-9a-f][0-9a-f]', value):
 mac = int(value.replace('-', ''), 16)
 if _is_universal(mac):
 return mac
 first_local_mac = first_local_mac or mac
 return first_local_mac or None

def _netbios_getnode():
 """Get the hardware address on Windows using NetBIOS calls.
 See http://support.microsoft.com/kb/118623 for details."""
 import win32wnet, netbios
 first_local_mac = None
 ncb = netbios.NCB()
 ncb.Command = netbios.NCBENUM
 ncb.Buffer = adapters = netbios.LANA_ENUM()
 adapters._pack()
 if win32wnet.Netbios(ncb) != 0:
 return None
 adapters._unpack()
 for i in range(adapters.length):
 ncb.Reset()
 ncb.Command = netbios.NCBRESET
 ncb.Lana_num = ord(adapters.lana[i])
 if win32wnet.Netbios(ncb) != 0:
 continue
 ncb.Reset()
 ncb.Command = netbios.NCBASTAT
 ncb.Lana_num = ord(adapters.lana[i])
 ncb.Callname = '*'.ljust(16)
 ncb.Buffer = status = netbios.ADAPTER_STATUS()
 if win32wnet.Netbios(ncb) != 0:
 continue
 status._unpack()
 bytes = status.adapter_address[:6]
 if len(bytes) != 6:
 continue
 mac = int.from_bytes(bytes, 'big')
 if _is_universal(mac):
 return mac
 first_local_mac = first_local_mac or mac
 return first_local_mac or None

_generate_time_safe = _UuidCreate = None
_has_uuid_generate_time_safe = None

Import optional C extension at toplevel, to help disabling it when testing
try:
 import _uuid
except ImportError:
 _uuid = None

def _load_system_functions():
 """
 Try to load platform-specific functions for generating uuids.
 """
 global _generate_time_safe, _UuidCreate, _has_uuid_generate_time_safe

 if _has_uuid_generate_time_safe is not None:
 return

 _has_uuid_generate_time_safe = False

 if sys.platform == "darwin" and int(os.uname().release.split('.')[0]) < 9:
 # The uuid_generate_* functions are broken on MacOS X 10.5, as noted
 # in issue #8621 the function generates the same sequence of values
 # in the parent process and all children created using fork (unless
 # those children use exec as well).
 #
 # Assume that the uuid_generate functions are broken from 10.5 onward,
 # the test can be adjusted when a later version is fixed.
 pass
 elif _uuid is not None:
 _generate_time_safe = _uuid.generate_time_safe
 _has_uuid_generate_time_safe = _uuid.has_uuid_generate_time_safe
 return

 try:
 # If we couldn't find an extension module, try ctypes to find
 # system routines for UUID generation.
 # Thanks to Thomas Heller for ctypes and for his help with its use here.
 import ctypes
 import ctypes.util

 # The uuid_generate_* routines are provided by libuuid on at least
 # Linux and FreeBSD, and provided by libc on Mac OS X.
 _libnames = ['uuid']
 if not sys.platform.startswith('win'):
 _libnames.append('c')
 for libname in _libnames:
 try:
 lib = ctypes.CDLL(ctypes.util.find_library(libname))
 except Exception: # pragma: nocover
 continue
 # Try to find the safe variety first.
 if hasattr(lib, 'uuid_generate_time_safe'):
 _uuid_generate_time_safe = lib.uuid_generate_time_safe
 # int uuid_generate_time_safe(uuid_t out);
 def _generate_time_safe():
 _buffer = ctypes.create_string_buffer(16)
 res = _uuid_generate_time_safe(_buffer)
 return bytes(_buffer.raw), res
 _has_uuid_generate_time_safe = True
 break

 elif hasattr(lib, 'uuid_generate_time'): # pragma: nocover
 _uuid_generate_time = lib.uuid_generate_time
 # void uuid_generate_time(uuid_t out);
 _uuid_generate_time.restype = None
 def _generate_time_safe():
 _buffer = ctypes.create_string_buffer(16)
 _uuid_generate_time(_buffer)
 return bytes(_buffer.raw), None
 break

 # On Windows prior to 2000, UuidCreate gives a UUID containing the
 # hardware address. On Windows 2000 and later, UuidCreate makes a
 # random UUID and UuidCreateSequential gives a UUID containing the
 # hardware address. These routines are provided by the RPC runtime.
 # NOTE: at least on Tim's WinXP Pro SP2 desktop box, while the last
 # 6 bytes returned by UuidCreateSequential are fixed, they don't appear
 # to bear any relationship to the MAC address of any network device
 # on the box.
 try:
 lib = ctypes.windll.rpcrt4
 except:
 lib = None
 _UuidCreate = getattr(lib, 'UuidCreateSequential',
 getattr(lib, 'UuidCreate', None))

 except Exception as exc:
 import warnings
 warnings.warn(f"Could not find fallback ctypes uuid functions: {exc}",
 ImportWarning)

def _unix_getnode():
 """Get the hardware address on Unix using the _uuid extension module
 or ctypes."""
 _load_system_functions()
 uuid_time, _ = _generate_time_safe()
 return UUID(bytes=uuid_time).node

def _windll_getnode():
 """Get the hardware address on Windows using ctypes."""
 import ctypes
 _load_system_functions()
 _buffer = ctypes.create_string_buffer(16)
 if _UuidCreate(_buffer) == 0:
 return UUID(bytes=bytes_(_buffer.raw)).node

def _random_getnode():
 """Get a random node ID."""
 # RFC 4122, $4.1.6 says "For systems with no IEEE address, a randomly or
 # pseudo-randomly generated value may be used; see Section 4.5. The
 # multicast bit must be set in such addresses, in order that they will
 # never conflict with addresses obtained from network cards."
 #
 # The "multicast bit" of a MAC address is defined to be "the least
 # significant bit of the first octet". This works out to be the 41st bit
 # counting from 1 being the least significant bit, or 1<<40.
 #
 # See https://en.wikipedia.org/wiki/MAC_address#Unicast_vs._multicast
 import random
 return random.getrandbits(48) | (1 << 40)

_node = None

_NODE_GETTERS_WIN32 = [_windll_getnode, _netbios_getnode, _ipconfig_getnode]

_NODE_GETTERS_UNIX = [_unix_getnode, _ifconfig_getnode, _ip_getnode,
 _arp_getnode, _lanscan_getnode, _netstat_getnode]

def getnode(*, getters=None):
 """Get the hardware address as a 48-bit positive integer.

 The first time this runs, it may launch a separate program, which could
 be quite slow. If all attempts to obtain the hardware address fail, we
 choose a random 48-bit number with its eighth bit set to 1 as recommended
 in RFC 4122.
 """
 global _node
 if _node is not None:
 return _node

 if sys.platform == 'win32':
 getters = _NODE_GETTERS_WIN32
 else:
 getters = _NODE_GETTERS_UNIX

 for getter in getters + [_random_getnode]:
 try:
 _node = getter()
 except:
 continue
 if (_node is not None) and (0 <= _node < (1 << 48)):
 return _node
 assert False, '_random_getnode() returned invalid value: {}'.format(_node)

_last_timestamp = None

def uuid1(node=None, clock_seq=None):
 """Generate a UUID from a host ID, sequence number, and the current time.
 If 'node' is not given, getnode() is used to obtain the hardware
 address. If 'clock_seq' is given, it is used as the sequence number;
 otherwise a random 14-bit sequence number is chosen."""

 # When the system provides a version-1 UUID generator, use it (but don't
 # use UuidCreate here because its UUIDs don't conform to RFC 4122).
 _load_system_functions()
 if _generate_time_safe is not None and node is clock_seq is None:
 uuid_time, safely_generated = _generate_time_safe()
 try:
 is_safe = SafeUUID(safely_generated)
 except ValueError:
 is_safe = SafeUUID.unknown
 return UUID(bytes=uuid_time, is_safe=is_safe)

 global _last_timestamp
 import time
 nanoseconds = int(time.time() * 1e9)
 # 0x01b21dd213814000 is the number of 100-ns intervals between the
 # UUID epoch 1582-10-15 00:00:00 and the Unix epoch 1970-01-01 00:00:00.
 timestamp = int(nanoseconds/100) + 0x01b21dd213814000
 if _last_timestamp is not None and timestamp <= _last_timestamp:
 timestamp = _last_timestamp + 1
 _last_timestamp = timestamp
 if clock_seq is None:
 import random
 clock_seq = random.getrandbits(14) # instead of stable storage
 time_low = timestamp & 0xffffffff
 time_mid = (timestamp >> 32) & 0xffff
 time_hi_version = (timestamp >> 48) & 0x0fff
 clock_seq_low = clock_seq & 0xff
 clock_seq_hi_variant = (clock_seq >> 8) & 0x3f
 if node is None:
 node = getnode()
 return UUID(fields=(time_low, time_mid, time_hi_version,
 clock_seq_hi_variant, clock_seq_low, node), version=1)

def uuid3(namespace, name):
 """Generate a UUID from the MD5 hash of a namespace UUID and a name."""
 from hashlib import md5
 hash = md5(namespace.bytes + bytes(name, "utf-8")).digest()
 return UUID(bytes=hash[:16], version=3)

def uuid4():
 """Generate a random UUID."""
 return UUID(bytes=os.urandom(16), version=4)

def uuid5(namespace, name):
 """Generate a UUID from the SHA-1 hash of a namespace UUID and a name."""
 from hashlib import sha1
 hash = sha1(namespace.bytes + bytes(name, "utf-8")).digest()
 return UUID(bytes=hash[:16], version=5)

The following standard UUIDs are for use with uuid3() or uuid5().

NAMESPACE_DNS = UUID('6ba7b810-9dad-11d1-80b4-00c04fd430c8')
NAMESPACE_URL = UUID('6ba7b811-9dad-11d1-80b4-00c04fd430c8')
NAMESPACE_OID = UUID('6ba7b812-9dad-11d1-80b4-00c04fd430c8')
NAMESPACE_X500 = UUID('6ba7b814-9dad-11d1-80b4-00c04fd430c8')

 Source code for eventsourcing.application

import os
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, Generic, List, Mapping, Optional, Type, TypeVar
from uuid import UUID

from eventsourcing.domain import (
 Aggregate,
 AggregateEvent,
 Snapshot,
 TAggregate,
)
from eventsourcing.persistence import (
 ApplicationRecorder,
 DatetimeAsISO,
 DecimalAsStr,
 EventStore,
 InfrastructureFactory,
 JSONTranscoder,
 Mapper,
 Notification,
 Transcoder,
 UUIDAsHex,
)

[docs]class Repository(Generic[TAggregate]):
 """Reconstructs aggregates from events in an
 :class:`~eventsourcing.persistence.EventStore`,
 possibly using snapshot store to avoid replaying
 all events."""

[docs] def __init__(
 self,
 event_store: EventStore[AggregateEvent],
 snapshot_store: Optional[EventStore[Snapshot]] = None,
):
 """
 Initialises repository with given event store (an
 :class:`~eventsourcing.persistence.EventStore` for aggregate
 :class:`~eventsourcing.domain.AggregateEvent` objects)
 and optionally a snapshot store (an
 :class:`~eventsourcing.persistence.EventStore` for aggregate
 :class:`~eventsourcing.domain.Snapshot` objects).
 """
 self.event_store = event_store
 self.snapshot_store = snapshot_store

[docs] def get(self, aggregate_id: UUID, version: Optional[int] = None) -> TAggregate:
 """
 Returns an :class:`~eventsourcing.domain.Aggregate`
 for given ID, optionally at the given version.
 """

 aggregate: Optional[TAggregate] = None
 gt: Optional[int] = None

 if self.snapshot_store is not None:
 # Try to get a snapshot.
 snapshots = self.snapshot_store.get(
 originator_id=aggregate_id,
 desc=True,
 limit=1,
 lte=version,
)
 try:
 snapshot = next(snapshots)
 except StopIteration:
 pass
 else:
 gt = snapshot.originator_version
 aggregate = snapshot.mutate()

 # Get aggregate events.
 domain_events = self.event_store.get(
 originator_id=aggregate_id,
 gt=gt,
 lte=version,
)

 # Reconstruct the aggregate from its events.
 for domain_event in domain_events:
 aggregate = domain_event.mutate(aggregate)

 # Raise exception if "not found".
 if aggregate is None:
 raise AggregateNotFound((aggregate_id, version))
 else:
 # Return the aggregate.
 return aggregate

[docs]@dataclass(frozen=True)
class Section:
 # noinspection PyUnresolvedReferences
 """
 Frozen dataclass that represents a section from a :class:`NotificationLog`.
 The :data:`items` attribute contains a list of
 :class:`~eventsourcing.persistence.Notification` objects.
 The :data:`id` attribute is the section ID, two integers
 separated by a comma that described the first and last
 notification ID that are included in the section.
 The :data:`next_id` attribute describes the section ID
 of the next section, and will be set if the section contains
 as many notifications are were requested.

 Constructor arguments:

 :param Optional[str] id: section ID of this section e.g. "1,10"
 :param List[Notification] items: a list of event notifications
 :param Optional[str] next_id: section ID of the following section
 """

 id: Optional[str]
 items: List[Notification]
 next_id: Optional[str]

[docs]class NotificationLog(ABC):
 """
 Abstract base class for notification logs.
 """

[docs] @abstractmethod
 def __getitem__(self, section_id: str) -> Section:
 """
 Returns a :class:`Section` from a notification log.
 """

[docs] @abstractmethod
 def select(self, start: int, limit: int) -> List[Notification]:
 """
 Returns a list of :class:`~eventsourcing.persistence.Notification` objects.
 """

[docs]class LocalNotificationLog(NotificationLog):
 """
 Notification log that presents sections of event notifications
 retrieved from an :class:`~eventsourcing.persistence.ApplicationRecorder`.
 """

 DEFAULT_SECTION_SIZE = 10

[docs] def __init__(
 self,
 recorder: ApplicationRecorder,
 section_size: int = DEFAULT_SECTION_SIZE,
):
 """
 Initialises a local notification object with given
 :class:`~eventsourcing.persistence.ApplicationRecorder`
 and an optional section size.

 Constructor arguments:

 :param ApplicationRecorder recorder: application recorder from which event
 notifications will be selected
 :param int section_size: number of notifications to include in a section

 """
 self.recorder = recorder
 self.section_size = section_size

[docs] def __getitem__(self, requested_section_id: str) -> Section:
 """
 Returns a :class:`Section` of event notifications
 based on the requested section ID. The section ID of
 the returned section will describe the event
 notifications that are actually contained in
 the returned section, and may vary from the
 requested section ID if there are less notifications
 in the recorder than were requested, or if there
 are gaps in the sequence of recorded event notification.
 """
 # Interpret the section ID.
 parts = requested_section_id.split(",")
 part1 = int(parts[0])
 part2 = int(parts[1])
 start = max(1, part1)
 limit = min(max(0, part2 - start + 1), self.section_size)

 # Select notifications.
 notifications = self.select(start, limit)

 # Get next section ID.
 actual_section_id: Optional[str]
 next_id: Optional[str]
 if len(notifications):
 last_notification_id = notifications[-1].id
 actual_section_id = self.format_section_id(
 notifications[0].id, last_notification_id
)
 if len(notifications) == limit:
 next_id = self.format_section_id(
 last_notification_id + 1, last_notification_id + limit
)
 else:
 next_id = None
 else:
 actual_section_id = None
 next_id = None

 # Return a section of the notification log.
 return Section(
 id=actual_section_id,
 items=notifications,
 next_id=next_id,
)

[docs] def select(self, start: int, limit: int) -> List[Notification]:
 if limit > self.section_size:
 raise ValueError(
 f"Requested limit {limit} greater than section size {self.section_size}"
)
 return self.recorder.select_notifications(start, limit)

 @staticmethod
 def format_section_id(first_id: int, last_id: int) -> str:
 return "{},{}".format(first_id, last_id)

[docs]class Application(ABC, Generic[TAggregate]):
 """
 Base class for event-sourced applications.
 """

 env: Mapping[str, str] = {}
 is_snapshotting_enabled: bool = False
 snapshotting_intervals: Optional[Dict[Type[Aggregate], int]] = None

[docs] def __init__(self, env: Optional[Mapping] = None) -> None:
 """
 Initialises an application with an
 :class:`~eventsourcing.persistence.InfrastructureFactory`,
 a :class:`~eventsourcing.persistence.Mapper`,
 an :class:`~eventsourcing.persistence.ApplicationRecorder`,
 an :class:`~eventsourcing.persistence.EventStore`,
 a :class:`~eventsourcing.application.Repository`, and
 a :class:`~eventsourcing.application.LocalNotificationLog`.
 """
 self.env = self.construct_env(env)
 self.factory = self.construct_factory()
 self.mapper = self.construct_mapper()
 self.recorder = self.construct_recorder()
 self.events = self.construct_event_store()
 self.snapshots = self.construct_snapshot_store()
 self.repository = self.construct_repository()
 self.log = self.construct_notification_log()

[docs] def construct_env(self, env: Optional[Mapping] = None) -> Mapping:
 """
 Constructs environment from which application will be configured.
 """
 _env = dict(type(self).env)
 if type(self).is_snapshotting_enabled or type(self).snapshotting_intervals:
 _env["IS_SNAPSHOTTING_ENABLED"] = "y"
 _env.update(os.environ)
 if env is not None:
 _env.update(env)
 return _env

[docs] def construct_factory(self) -> InfrastructureFactory:
 """
 Constructs an :class:`~eventsourcing.persistence.InfrastructureFactory`
 for use by the application.
 """
 return InfrastructureFactory.construct(self.__class__.__name__, env=self.env)

[docs] def construct_mapper(self, application_name: str = "") -> Mapper:
 """
 Constructs a :class:`~eventsourcing.persistence.Mapper`
 for use by the application.
 """
 return self.factory.mapper(
 transcoder=self.construct_transcoder(),
 application_name=application_name,
)

[docs] def construct_transcoder(self) -> Transcoder:
 """
 Constructs a :class:`~eventsourcing.persistence.Transcoder`
 for use by the application.
 """
 transcoder = JSONTranscoder()
 self.register_transcodings(transcoder)
 return transcoder

 # noinspection SpellCheckingInspection
[docs] def register_transcodings(self, transcoder: Transcoder) -> None:
 """
 Registers :class:`~eventsourcing.persistence.Transcoding`
 objects on given :class:`~eventsourcing.persistence.JSONTranscoder`.
 """
 transcoder.register(UUIDAsHex())
 transcoder.register(DecimalAsStr())
 transcoder.register(DatetimeAsISO())

[docs] def construct_recorder(self) -> ApplicationRecorder:
 """
 Constructs an :class:`~eventsourcing.persistence.ApplicationRecorder`
 for use by the application.
 """
 return self.factory.application_recorder()

[docs] def construct_event_store(self) -> EventStore[AggregateEvent]:
 """
 Constructs an :class:`~eventsourcing.persistence.EventStore`
 for use by the application to store and retrieve aggregate
 :class:`~eventsourcing.domain.AggregateEvent` objects.
 """
 return self.factory.event_store(
 mapper=self.mapper,
 recorder=self.recorder,
)

[docs] def construct_snapshot_store(self) -> Optional[EventStore[Snapshot]]:
 """
 Constructs an :class:`~eventsourcing.persistence.EventStore`
 for use by the application to store and retrieve aggregate
 :class:`~eventsourcing.domain.Snapshot` objects.
 """
 if not self.factory.is_snapshotting_enabled():
 return None
 recorder = self.factory.aggregate_recorder(purpose="snapshots")
 return self.factory.event_store(
 mapper=self.mapper,
 recorder=recorder,
)

[docs] def construct_repository(self) -> Repository[TAggregate]:
 """
 Constructs a :class:`Repository` for use by the application.
 """
 return Repository(
 event_store=self.events,
 snapshot_store=self.snapshots,
)

[docs] def construct_notification_log(self) -> LocalNotificationLog:
 """
 Constructs a :class:`LocalNotificationLog` for use by the application.
 """
 return LocalNotificationLog(self.recorder, section_size=10)

[docs] def save(self, *aggregates: Aggregate, **kwargs: Any) -> None:
 """
 Collects pending events from given aggregates and
 puts them in the application's event store.
 """
 # Collect and store events.
 events = []
 for aggregate in aggregates:
 events += aggregate.collect_events()
 self.events.put(events, **kwargs)

 # Take snapshots.
 if self.snapshots and self.snapshotting_intervals:
 aggregate_types = {}
 for aggregate in aggregates:
 aggregate_types[aggregate.id] = type(aggregate)
 for event in events:
 aggregate_type = aggregate_types[event.originator_id]
 interval = self.snapshotting_intervals.get(aggregate_type)
 if interval is not None:
 if event.originator_version % interval == 0:
 self.take_snapshot(
 aggregate_id=event.originator_id,
 version=event.originator_version,
)

 self.notify(events)

[docs] def notify(self, new_events: List[AggregateEvent]) -> None:
 """
 Called after new domain events have been saved. This
 method on this class class doesn't actually do anything,
 but this method may be implemented by subclasses that
 need to take action when new domain events have been saved.
 """

[docs] def take_snapshot(self, aggregate_id: UUID, version: Optional[int] = None) -> None:
 """
 Takes a snapshot of the recorded state of the aggregate,
 and puts the snapshot in the snapshot store.
 """
 if self.snapshots is None:
 raise AssertionError(
 "Can't take snapshot without snapshots store. Please "
 "set environment variable IS_SNAPSHOTTING_ENABLED to "
 "a true value (e.g. 'y'), or set 'is_snapshotting_enabled' "
 "on application class, or set 'snapshotting_intervals' on "
 "application class."
)
 else:
 aggregate = self.repository.get(aggregate_id, version)
 snapshot = Snapshot.take(aggregate)
 self.snapshots.put([snapshot])

TApplication = TypeVar("TApplication", bound=Application)

[docs]class AggregateNotFound(Exception):
 """
 Raised when an :class:`~eventsourcing.domain.Aggregate`
 object is not found in a :class:`Repository`.
 """

 Source code for eventsourcing.cipher

import os
from base64 import b64decode, b64encode

from Crypto.Cipher import AES
from Crypto.Cipher._mode_gcm import GcmMode
from Crypto.Cipher.AES import key_size

from eventsourcing.persistence import Cipher

[docs]class AESCipher(Cipher):
 """
 Cipher strategy that uses AES cipher in GCM mode.
 """

 KEY_SIZES = key_size

[docs] @staticmethod
 def create_key(num_bytes: int) -> str:
 """
 Creates AES cipher key, with length num_bytes.

 :param num_bytes: An int value, either 16, 24, or 32.

 """
 AESCipher.check_key_size(num_bytes)
 return b64encode(AESCipher.random_bytes(num_bytes)).decode("utf8")

 @staticmethod
 def check_key_size(num_bytes: int) -> None:
 if num_bytes not in AESCipher.KEY_SIZES:
 raise ValueError(
 "Invalid key size: {} not in {}".format(num_bytes, AESCipher.KEY_SIZES)
)

 @staticmethod
 def random_bytes(num_bytes: int) -> bytes:
 return os.urandom(num_bytes)

 # noinspection PyMissingConstructor
[docs] def __init__(self, cipher_key: str):
 """
 Initialises AES cipher with ``cipher_key``.

 :param str cipher_key: 16, 24, or 32 bytes encoded as base64
 """
 key = b64decode(cipher_key.encode("utf8"))
 AESCipher.check_key_size(len(key))
 self.key = key

[docs] def encrypt(self, plaintext: bytes) -> bytes:
 """Return ciphertext for given plaintext."""

 # Construct AES-GCM cipher, with 96-bit nonce.
 nonce = AESCipher.random_bytes(12)
 cipher = self.construct_cipher(nonce)

 # Encrypt and digest.
 result = cipher.encrypt_and_digest(plaintext)
 encrypted = result[0]
 tag = result[1]

 # Combine with nonce.
 ciphertext = nonce + tag + encrypted

 # Return ciphertext.
 return ciphertext

 def construct_cipher(self, nonce: bytes) -> GcmMode:
 cipher = AES.new(
 self.key,
 AES.MODE_GCM,
 nonce,
)
 assert isinstance(cipher, GcmMode)
 return cipher

[docs] def decrypt(self, ciphertext: bytes) -> bytes:
 """Return plaintext for given ciphertext."""

 # Split out the nonce, tag, and encrypted data.
 nonce = ciphertext[:12]
 if len(nonce) != 12:
 raise ValueError("Damaged cipher text: invalid nonce length")

 tag = ciphertext[12:28]
 if len(tag) != 16:
 raise ValueError("Damaged cipher text: invalid tag length")
 encrypted = ciphertext[28:]

 # Construct AES cipher, with old nonce.
 cipher = self.construct_cipher(nonce)

 # Decrypt and verify.
 try:
 plaintext = cipher.decrypt_and_verify(encrypted, tag)
 except ValueError as e:
 raise ValueError("Cipher text is damaged: {}".format(e))
 return plaintext

 Source code for eventsourcing.compressor

import zlib

from eventsourcing.persistence import Compressor

[docs]class ZlibCompressor(Compressor):
[docs] def compress(self, data: bytes) -> bytes:
 """
 Compress bytes using zlib.
 """
 return zlib.compress(data)

[docs] def decompress(self, data: bytes) -> bytes:
 """
 Decompress bytes using zlib.
 """
 return zlib.decompress(data)

 Source code for eventsourcing.domain

import inspect
import os
from abc import ABC, ABCMeta
from dataclasses import dataclass
from datetime import datetime, tzinfo
from types import FunctionType, WrapperDescriptorType
from typing import (
 Any,
 Callable,
 Dict,
 Generic,
 Iterable,
 List,
 Optional,
 Type,
 TypeVar,
 Union,
 cast,
)
from uuid import UUID, uuid4

from eventsourcing.utils import get_method_name, get_topic, resolve_topic

noinspection SpellCheckingInspection
TZINFO: tzinfo = resolve_topic(os.getenv("TZINFO_TOPIC", "datetime:timezone.utc"))

noinspection PyTypeChecker
TAggregate = TypeVar("TAggregate", bound="Aggregate")

[docs]class MetaDomainEvent(ABCMeta):
[docs] def __new__(mcs, name: str, bases: tuple, cls_dict: dict) -> "MetaDomainEvent":
 event_cls = ABCMeta.__new__(mcs, name, bases, cls_dict)
 event_cls = dataclass(frozen=True)(event_cls) # type: ignore
 return event_cls

[docs] def __init__(cls, *args: Any, **kwargs: Any) -> None:
 super().__init__(*args, **kwargs)

[docs]class DomainEvent(ABC, metaclass=MetaDomainEvent):
 # noinspection PyUnresolvedReferences
 """
 Base class for domain events, such as aggregate :class:`AggregateEvent`
 and aggregate :class:`Snapshot`.

 Constructor arguments:

 :param UUID originator_id: ID of originating aggregate.
 :param int originator_version: version of originating aggregate.
 :param datetime timestamp: date-time of the event
 """

 originator_id: UUID
 originator_version: int
 timestamp: datetime

[docs]class AggregateEvent(DomainEvent, Generic[TAggregate]):
 # noinspection PyUnresolvedReferences
 """
 Base class for aggregate events. Subclasses will model
 decisions made by the domain model aggregates.

 Constructor arguments:

 :param UUID originator_id: ID of originating aggregate.
 :param int originator_version: version of originating aggregate.
 :param datetime timestamp: date-time of the event
 """

[docs] def mutate(self, obj: Optional[TAggregate]) -> Optional[TAggregate]:
 """
 Changes the state of the aggregate
 according to domain event attributes.
 """
 # Check event is next in its sequence.
 # Use counting to follow the sequence.
 # assert isinstance(obj, Aggregate), (type(obj), self)
 assert obj is not None
 next_version = obj.version + 1
 if self.originator_version != next_version:
 raise VersionError(self.originator_version, next_version)
 if self.apply(obj) is not None: # type: ignore
 raise TypeError(
 f"Unexpected value returned from "
 f"{type(self).apply.__qualname__}(). Values "
 f"returned from 'apply' methods are discarded."
)
 # Update the aggregate version.
 obj.version = self.originator_version
 # Update the modified time.
 obj.modified_on = self.timestamp
 return obj

 # noinspection PyShadowingNames
[docs] def apply(self, aggregate: TAggregate) -> None:
 """
 Applies the domain event to the aggregate.
 """

[docs]class AggregateCreated(AggregateEvent["Aggregate"]):
 # noinspection PyUnresolvedReferences
 """
 Domain event for when aggregate is created.

 Constructor arguments:

 :param UUID originator_id: ID of originating aggregate.
 :param int originator_version: version of originating aggregate.
 :param datetime timestamp: date-time of the event
 :param str originator_topic: topic for the aggregate class
 """

 originator_topic: str

[docs] def mutate(self, obj: Optional[TAggregate]) -> TAggregate:
 """
 Constructs aggregate instance defined
 by domain event object attributes.
 """
 assert obj is None
 # Copy the event attributes.
 kwargs = self.__dict__.copy()
 # Resolve originator topic.
 aggregate_class: Type[TAggregate] = resolve_topic(
 kwargs.pop("originator_topic")
)

 # Construct and return aggregate object.
 agg: TAggregate = aggregate_class.__new__(aggregate_class)
 # Separate the base class keywords arguments.
 base_kwargs = {
 "id": kwargs.pop("originator_id"),
 "version": kwargs.pop("originator_version"),
 "timestamp": kwargs.pop("timestamp"),
 }
 # Call the base class init method.
 Aggregate.__base_init__(agg, **base_kwargs)
 # Call the aggregate class init method.
 # noinspection PyTypeChecker
 init_method = agg.__init__ # type: ignore
 # Provide the id, if the init method expects it.
 if aggregate_class._init_mentions_id:
 kwargs["id"] = base_kwargs["id"]
 # noinspection PyArgumentList
 init_method(**kwargs)
 return agg

class CommandMethodDecorator:
 def __init__(self, arg: Union[Callable, str, Type[AggregateEvent]]):
 self.is_name_inferred_from_method = False
 self.given_event_cls: Optional[Type[AggregateEvent]] = None
 self.event_cls_name: Optional[str] = None
 self.is_property_setter = False
 self.property_setter_arg_name: Optional[str] = None
 self.is_decorating_a_property = False
 self.decorated_property: Optional[property] = None
 self.original_method: Optional[FunctionType] = None
 # Initialising an instance.
 if isinstance(arg, str):
 # Decorator used with an explicit name.
 self.initialise_from_explicit_name(event_cls_name=arg)
 elif isinstance(arg, type) and issubclass(arg, AggregateEvent):
 self.initialise_from_event_cls(event_cls=arg)
 elif isinstance(arg, FunctionType):
 # Decorator used without explicit name.
 self.initialise_from_decorated_method(original_method=arg)
 elif isinstance(arg, property):
 method_name = arg.fset.__name__
 raise TypeError(
 f"@event on {method_name}() property setter requires event class name"
)
 elif isinstance(arg, staticmethod):
 raise TypeError(
 f"{arg.__func__.__name__}() staticmethod can't be "
 f"used to update aggregate state"
)
 elif isinstance(arg, classmethod):
 # noinspection SpellCheckingInspection
 raise TypeError(
 f"{arg.__func__.__name__}() classmethod can't be "
 f"used to update aggregate state"
)
 else:
 raise TypeError(f"Unsupported usage: {type(arg)} is not a str or function")

 def initialise_from_decorated_method(self, original_method: FunctionType) -> None:
 self.original_method = original_method
 original_method_name = original_method.__name__
 if original_method_name != "__init__":
 self.is_name_inferred_from_method = True
 self.event_cls_name = "".join(
 [s.capitalize() for s in original_method_name.split("_")]
)
 _check_no_variable_params(self.original_method)

 def initialise_from_event_cls(self, event_cls: Type[AggregateEvent]) -> None:
 self.given_event_cls = event_cls

 def initialise_from_explicit_name(self, event_cls_name: str) -> None:
 if event_cls_name == "":
 raise ValueError("Can't use empty string as name of event class")
 self.event_cls_name = event_cls_name

 def __call__(self, *args: Any, **kwargs: Any) -> Any:
 # Calling an instance.
 # noinspection SpellCheckingInspection
 if self.original_method is None:
 # Decorator doesn't yet know what method is being decorated,
 # so decorator must have been specified with an explicit
 # event name or class, so we're still initialising...
 assert len(kwargs) == 0, "Unsupported usage"
 assert len(args) == 1, "Unsupported usage"
 arg = args[0]
 # assert isinstance(args[0], FunctionType), args[0]
 if isinstance(arg, FunctionType):
 # Decorating a function.
 self.original_method = arg
 _check_no_variable_params(self.original_method)
 elif isinstance(arg, property):
 # Decorating a property.
 self.is_decorating_a_property = True
 self.decorated_property = arg
 if arg.fset is None:
 assert arg.fget is not None
 method_name = arg.fget.__name__
 raise TypeError(
 f"@event can't decorate {method_name}() property getter"
)
 assert isinstance(arg.fset, FunctionType)
 self.original_method = arg.fset
 assert self.original_method
 setter_arg_names = list(inspect.signature(arg.fset).parameters)
 assert len(setter_arg_names) == 2
 self.property_setter_arg_name = setter_arg_names[1]
 _check_no_variable_params(self.original_method)
 else:
 raise ValueError(
 f"Unsupported usage: {type(arg)} is not a str or a FunctionType"
)
 if self.given_event_cls:
 if self.given_event_cls in original_methods:
 name = self.given_event_cls.__name__
 raise TypeError(
 f"{name} event class used in more than one decorator"
)

 # Set decorated event apply() method on given event class.
 if "apply" in self.given_event_cls.__dict__:
 name = self.given_event_cls.__name__
 raise TypeError(f"{name} event class has unexpected apply() method")
 # self.given_event_cls.apply = DecoratedEvent.apply # type: ignore
 setattr(# noqa: B010
 self.given_event_cls, "apply", DecoratedEvent.apply
)
 # Register the decorated method under the given event class.
 original_methods[self.given_event_cls] = self.original_method
 return self
 else:
 # Initialised decorator was called directly, presumably by
 # a decorating property that has this decorator as its fset.
 # So trigger an event.
 assert self.is_property_setter
 assert self.property_setter_arg_name
 assert len(args) == 2
 assert len(kwargs) == 0
 assert isinstance(args[0], Aggregate)
 aggregate_instance = args[0]
 bound = BoundCommandMethodDecorator(self, aggregate_instance)
 property_setter_arg_value = args[1]
 kwargs = {self.property_setter_arg_name: property_setter_arg_value}
 bound.trigger(**kwargs)

 def __get__(
 self, instance: Optional[TAggregate], owner: "MetaAggregate"
) -> Union["BoundCommandMethodDecorator", "UnboundCommandMethodDecorator"]:
 if self.is_decorating_a_property:
 assert self.decorated_property
 return self.decorated_property.__get__(instance, owner)
 else:
 if instance is None:
 return UnboundCommandMethodDecorator(self)
 else:
 return BoundCommandMethodDecorator(self, instance)

 def __set__(self, instance: TAggregate, value: Any) -> None:
 assert self.is_decorating_a_property
 # Set decorated property.
 b = BoundCommandMethodDecorator(self, instance)
 assert self.property_setter_arg_name
 kwargs = {self.property_setter_arg_name: value}
 b.trigger(**kwargs)

[docs]def event(
 arg: Optional[Union[FunctionType, str, Type[AggregateEvent]]] = None
) -> CommandMethodDecorator:
 """
 Can be used to decorate an aggregate method so that when the
 method is called an event is triggered. The body of the method
 will be used to apply the event to the aggregate, both when the
 event is triggered and when the aggregate is reconstructed from
 stored events.

 .. code-block:: python

 class MyAggregate(Aggregate):
 @event("NameChanged")
 def set_name(self, name: str):
 self.name = name

 ...is equivalent to...

 .. code-block:: python

 class MyAggregate(Aggregate):
 def set_name(self, name: str):
 self.trigger_event(self.NameChanged, name=name)

 class NameChanged(Aggregate.Event):
 name: str

 def apply(self, aggregate):
 aggregate.name = self.name

 In the example above, the event "NameChanged" is defined automatically
 by inspecting the signature of the `set_name()` method. If it is
 preferred to declare the event class explicitly, for example to define
 upcasting of old events, the event class itself can be mentioned in the
 event decorator rather than just providing the name of the event as a
 string.

 .. code-block:: python

 class MyAggregate(Aggregate):

 class NameChanged(Aggregate.Event):
 name: str

 @event(NameChanged)
 def set_name(self, name: str):
 aggregate.name = self.name

 """
 if arg is None:
 return event # type: ignore
 else:
 return CommandMethodDecorator(arg)

triggers = event

[docs]class UnboundCommandMethodDecorator:
 """
 Wraps an EventDecorator instance when attribute is accessed
 on an aggregate class.
 """

 # noinspection PyShadowingNames
[docs] def __init__(self, event_decorator: CommandMethodDecorator):
 """

 :param CommandMethodDecorator event_decorator:
 """
 self.event_decorator = event_decorator
 assert event_decorator.original_method
 self.__qualname__ = event_decorator.original_method.__qualname__
 self.__name__ = event_decorator.original_method.__name__

[docs]class BoundCommandMethodDecorator:
 """
 Wraps an EventDecorator instance when attribute is accessed
 on an aggregate so that the aggregate methods can be accessed.
 """

 # noinspection PyShadowingNames
[docs] def __init__(self, event_decorator: CommandMethodDecorator, aggregate: TAggregate):
 """

 :param CommandMethodDecorator event_decorator:
 :param Aggregate aggregate:
 """
 assert event_decorator.original_method
 self.event_decorator = event_decorator
 self.__qualname__ = event_decorator.original_method.__qualname__
 self.__name__ = event_decorator.original_method.__name__
 self.aggregate = aggregate

 def trigger(self, *args: Any, **kwargs: Any) -> None:
 assert isinstance(self.event_decorator, CommandMethodDecorator) # for PyCharm
 assert self.event_decorator.original_method
 kwargs = _coerce_args_to_kwargs(
 self.event_decorator.original_method, args, kwargs
)
 if self.event_decorator.given_event_cls:
 event_cls = self.event_decorator.given_event_cls
 else:
 assert self.event_decorator.event_cls_name
 event_cls = getattr(self.aggregate, self.event_decorator.event_cls_name)
 self.aggregate.trigger_event(event_cls, **kwargs)

[docs] def __call__(self, *args: Any, **kwargs: Any) -> None:
 self.trigger(*args, **kwargs)

original_methods: Dict[MetaDomainEvent, FunctionType] = {}

[docs]class DecoratedEvent(AggregateEvent):
 # noinspection PyShadowingNames
[docs] def apply(self, aggregate: TAggregate) -> None:
 """
 Applies event to aggregate by calling
 method decorated by @event.
 """
 event_obj_dict = dict(self.__dict__)
 event_obj_dict.pop("originator_id")
 event_obj_dict.pop("originator_version")
 event_obj_dict.pop("timestamp")
 original_method = original_methods[type(self)]
 method_signature = inspect.signature(original_method)
 # args = []
 # for name, param in method_signature.parameters.items():
 for name in method_signature.parameters:
 if name == "self":
 continue
 # if param.kind == param.POSITIONAL_ONLY:
 # args.append(event_obj_dict.pop(name))
 # original_method(aggregate, *args, **event_obj_dict)
 returned_value = original_method(aggregate, **event_obj_dict)
 if returned_value is not None:
 raise TypeError(
 f"Unexpected value returned from "
 f"{original_method.__qualname__}(). Values "
 f"returned from 'apply' methods are discarded."
)

TDomainEvent = TypeVar("TDomainEvent", bound=DomainEvent)
TAggregateEvent = TypeVar("TAggregateEvent", bound=AggregateEvent)
TAggregateCreated = TypeVar("TAggregateCreated", bound=AggregateCreated)

def _check_no_variable_params(
 method: Union[FunctionType, WrapperDescriptorType]
) -> None:
 assert isinstance(method, (FunctionType, WrapperDescriptorType)), type(method)
 for param in inspect.signature(method).parameters.values():
 if param.kind is param.VAR_POSITIONAL:
 raise TypeError("variable positional parameters not supported")
 # Todo: Support VAR_POSITIONAL?
 # annotations["__star_args__"] = "typing.Any"

 elif param.kind is param.VAR_KEYWORD:
 # Todo: Support VAR_KEYWORD?
 # annotations["__star_kwargs__"] = "typing.Any"
 raise TypeError("variable keyword parameters not supported")

def _coerce_args_to_kwargs(
 method: Union[FunctionType, WrapperDescriptorType],
 args: Iterable[Any],
 kwargs: Dict[str, Any],
 expects_id: bool = False,
) -> Dict[str, Any]:
 assert isinstance(method, (FunctionType, WrapperDescriptorType))
 method_signature = inspect.signature(method)
 copy_kwargs = dict(kwargs)
 args = tuple(args)
 positional_names = []
 keyword_defaults = {}
 required_positional = []
 required_keyword_only = []

 if expects_id:
 positional_names.append("id")
 required_positional.append("id")
 for name, param in method_signature.parameters.items():
 if name == "self":
 continue
 # elif param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD):
 if param.kind is param.KEYWORD_ONLY:
 required_keyword_only.append(name)
 if param.kind is param.POSITIONAL_OR_KEYWORD:
 positional_names.append(name)
 if param.default == param.empty:
 required_positional.append(name)
 if param.default != param.empty:
 keyword_defaults[name] = param.default

 # if not required_keyword_only and not positional_names:
 # if args or kwargs:
 # raise TypeError(f"{method.__name__}() takes no args")

 for name in kwargs:
 if name not in required_keyword_only and name not in positional_names:
 raise TypeError(
 f"{get_method_name(method)}() got an unexpected "
 f"keyword argument '{name}'"
)

 counter = 0
 len_args = len(args)
 if len_args > len(positional_names):
 msg = (
 f"{get_method_name(method)}() takes {len(positional_names) + 1} "
 f"positional argument{'' if len(positional_names) + 1 == 1 else 's'} "
 f"but {len_args + 1} were given"
)
 raise TypeError(msg)

 required_positional_not_in_kwargs = [
 n for n in required_positional if n not in kwargs
]
 num_missing = len(required_positional_not_in_kwargs) - len_args
 if num_missing > 0:
 missing_names = [
 f"'{name}'" for name in required_positional_not_in_kwargs[len_args:]
]
 msg = (
 f"{get_method_name(method)}() missing {num_missing} required positional "
 f"argument{'' if num_missing == 1 else 's'}: "
)
 raise_missing_names_type_error(missing_names, msg)

 for name in positional_names:
 if counter + 1 > len_args:
 break
 if name not in kwargs:
 copy_kwargs[name] = args[counter]
 counter += 1
 else:
 raise TypeError(
 f"{get_method_name(method)}() got multiple values for argument '{name}'"
)

 missing_keyword_only_arguments = []
 for name in required_keyword_only:
 if name not in kwargs:
 missing_keyword_only_arguments.append(name)

 if missing_keyword_only_arguments:
 missing_names = [f"'{name}'" for name in missing_keyword_only_arguments]
 msg = (
 f"{get_method_name(method)}() missing {len(missing_names)} "
 f"required keyword-only argument"
 f"{'' if len(missing_names) == 1 else 's'}: "
)
 raise_missing_names_type_error(missing_names, msg)

 for name, value in keyword_defaults.items():
 if name not in copy_kwargs:
 copy_kwargs[name] = value
 return copy_kwargs

def raise_missing_names_type_error(missing_names: List[str], msg: str) -> None:
 msg += missing_names[0]
 if len(missing_names) == 2:
 msg += f" and {missing_names[1]}"
 elif len(missing_names) > 2:
 msg += ", " + ", ".join(missing_names[1:-1])
 msg += f", and {missing_names[-1]}"
 raise TypeError(msg)

[docs]class MetaAggregate(ABCMeta):
 _annotations_mention_id = False
 _init_mentions_id = False
 INITIAL_VERSION = 1

[docs] def __new__(mcs, *args: Any, **kwargs: Any) -> "MetaAggregate":
 try:
 args[2]["__annotations__"].pop("id")
 except KeyError:
 pass
 else:
 args[2]["_annotations_mention_id"] = True
 cls = ABCMeta.__new__(mcs, *args)
 cls = dataclass(eq=False, repr=False)(cls)
 return cast(MetaAggregate, cls)

[docs] def __init__(
 cls,
 *args: Any,
 created_event_name: Optional[str] = None,
) -> None:
 super().__init__(*args)

 # Prepare created event class.
 created_event_classes = {}

 try:
 created_event_class = cls.__dict__["_created_event_class"]
 if created_event_name:
 raise TypeError(
 "Can't use both '_created_event_class' and 'created_event_name'"
)
 except KeyError:
 created_event_class = None

 if isinstance(cls.__dict__["__init__"], CommandMethodDecorator):
 init_decorator: CommandMethodDecorator = cls.__dict__["__init__"]
 init_method = init_decorator.original_method
 if created_event_name:
 raise TypeError(
 "Can't use both 'created_event_name' and __init__ @event decorator"
)
 elif created_event_class:
 raise TypeError(
 "Can't use both '_created_event_class' and __init__ @event "
 "decorator"
)
 elif init_decorator.event_cls_name:
 created_event_name = init_decorator.event_cls_name
 elif init_decorator.given_event_cls:
 created_event_class = init_decorator.given_event_cls
 else:
 raise TypeError(
 "Neither name nor class given to __init__ @event decorator"
)
 cls.__init__ = init_method # type: ignore
 else:
 init_method = cls.__dict__["__init__"]

 assert isinstance(init_method, FunctionType)

 for name, value in tuple(cls.__dict__.items()):
 if isinstance(value, type) and issubclass(value, AggregateCreated):
 created_event_classes[name] = value

 # Use the class as the created class, if so named.
 if created_event_name in created_event_classes:
 created_event_class = created_event_classes[created_event_name]

 elif created_event_class is None:
 if len(created_event_classes) == 0 or created_event_name:
 if not created_event_name:
 created_event_name = "Created"
 # Define a "created" event for this class.
 created_cls_annotations = {}
 _check_no_variable_params(init_method)
 method_signature = inspect.signature(init_method)
 for param_name in method_signature.parameters:
 if param_name == "self":
 continue
 if param_name == "id":
 cls._init_mentions_id = True
 continue
 created_cls_annotations[param_name] = "typing.Any"

 created_event_class = type(
 created_event_name,
 (AggregateCreated,),
 {
 "__annotations__": created_cls_annotations,
 "__module__": cls.__module__,
 "__qualname__": ".".join(
 [cls.__qualname__, created_event_name]
),
 },
)
 setattr(cls, created_event_name, created_event_class)

 elif len(created_event_classes) == 1:
 created_event_class = list(created_event_classes.values())[0]

 cls._created_event_class = created_event_class

 # Prepare the subsequent event classes.
 for attribute in tuple(cls.__dict__.values()):

 # Watch out for @property that sits over an @event.
 if isinstance(attribute, property) and isinstance(
 attribute.fset, CommandMethodDecorator
):
 attribute = attribute.fset
 if attribute.is_name_inferred_from_method:
 # We don't want name inferred from property (not past participle).
 method_name = attribute.original_method.__name__
 raise TypeError(
 f"@event under {method_name}() property setter requires event "
 f"class name"
)
 # Attribute is a property decorating an event decorator.
 attribute.is_property_setter = True

 # Attribute is an event decorator.
 if isinstance(attribute, CommandMethodDecorator):
 # Prepare the subsequent aggregate events.
 original_method = attribute.original_method
 assert isinstance(original_method, FunctionType)

 method_signature = inspect.signature(original_method)
 annotations = {}
 for param_name in method_signature.parameters:
 if param_name == "self":
 continue
 elif attribute.is_property_setter:
 assert len(method_signature.parameters) == 2
 attribute.property_setter_arg_name = param_name
 annotations[param_name] = "typing.Any" # Todo: Improve this?

 if not attribute.given_event_cls:
 assert attribute.event_cls_name
 event_cls_name = attribute.event_cls_name

 # Check event class isn't already defined.
 if event_cls_name in cls.__dict__:
 raise TypeError(
 f"{event_cls_name} event already defined on {cls.__name__}"
)

 event_cls_qualname = ".".join([cls.__qualname__, event_cls_name])
 event_cls_dict = {
 "__annotations__": annotations,
 "__module__": cls.__module__,
 "__qualname__": event_cls_qualname,
 }
 event_cls = MetaDomainEvent(
 event_cls_name, (DecoratedEvent,), event_cls_dict
)
 original_methods[event_cls] = original_method
 setattr(cls, event_cls_name, event_cls)
 # Inspect the parameters of the create_id method.
 cls._create_id_param_names = []
 for name, param in inspect.signature(cls.create_id).parameters.items():
 if param.kind in [param.KEYWORD_ONLY, param.POSITIONAL_OR_KEYWORD]:
 cls._create_id_param_names.append(name)

[docs] def __call__(cls: "MetaAggregate", *args: Any, **kwargs: Any) -> TAggregate:
 # noinspection PyTypeChecker
 self_init: WrapperDescriptorType = cls.__init__ # type: ignore
 kwargs = _coerce_args_to_kwargs(
 self_init, args, kwargs, expects_id=cls._annotations_mention_id
)
 if cls._created_event_class is None:
 raise TypeError("attribute '_created_event_class' not set on class")
 else:
 new_aggregate: TAggregate = cls._create(
 event_class=cls._created_event_class,
 # id=id,
 **kwargs,
)
 return new_aggregate

 # noinspection PyUnusedLocal
[docs] @staticmethod
 def create_id(**kwargs: Any) -> UUID:
 """
 Returns a new aggregate ID.
 """
 return uuid4()

 # noinspection PyShadowingBuiltins
[docs] def _create(
 cls,
 event_class: Type[TAggregateCreated],
 *,
 id: Optional[UUID] = None,
 **kwargs: Any,
) -> TAggregate:
 """
 Factory method to construct a new
 aggregate object instance.
 """
 # Construct the domain event class,
 # with an ID and version, and the
 # a topic for the aggregate class.
 create_id_kwargs = {
 k: v for k, v in kwargs.items() if k in cls._create_id_param_names
 }

 try:
 created_event: TAggregateCreated = event_class(# type: ignore
 originator_topic=get_topic(cls),
 originator_id=id or cls.create_id(**create_id_kwargs),
 originator_version=cls.INITIAL_VERSION,
 timestamp=datetime.now(tz=TZINFO),
 **kwargs,
)
 except TypeError as e:
 msg = (
 f"Unable to construct 'aggregate created' "
 f"event with class {event_class.__qualname__} "
 f"and keyword args {kwargs}: {e}"
)
 raise TypeError(msg)
 # Construct the aggregate object.
 agg: TAggregate = created_event.mutate(None)
 # Append the domain event to pending list.
 agg.pending_events.append(created_event)
 # Return the aggregate.
 return agg

[docs]class Aggregate(ABC, metaclass=MetaAggregate):
 """
 Base class for aggregate roots.
 """

[docs] class Event(AggregateEvent):
 pass

[docs] class Created(AggregateCreated):
 pass

[docs] def __new__(cls, *args: Any, **kwargs: Any) -> Any:
 return object.__new__(cls)

[docs] def __eq__(self, other: Any) -> bool:
 return type(self) == type(other) and self.__dict__ == other.__dict__

[docs] def __repr__(self) -> str:
 attrs = [
 f"{k.lstrip('_')}={v!r}"
 for k, v in self.__dict__.items()
 if k != "_pending_events"
]
 return f"{type(self).__name__}({', '.join(attrs)})"

 # noinspection PyShadowingBuiltins
[docs] def __base_init__(self, id: UUID, version: int, timestamp: datetime) -> None:
 """
 Initialises an aggregate object with an :data:`id`, a :data:`version`
 number, and a :data:`timestamp`. The internal :data:`pending_events` list
 is also initialised.
 """
 self._id = id
 self._version = version
 self._created_on = timestamp
 self._modified_on = timestamp
 self._pending_events: List[AggregateEvent] = []

 @property
 def id(self) -> UUID:
 """
 The ID of the aggregate.
 """
 return self._id

 @property
 def version(self) -> int:
 """
 The version number of the aggregate.
 """
 return self._version

 @version.setter
 def version(self, version: int) -> None:
 self._version = version

 @property
 def created_on(self) -> datetime:
 """
 The date and time when the aggregate was created.
 """
 return self._created_on

 @property
 def modified_on(self) -> datetime:
 """
 The date and time when the aggregate was last modified.
 """
 return self._modified_on

 @modified_on.setter
 def modified_on(self, modified_on: datetime) -> None:
 self._modified_on = modified_on

 @property
 def pending_events(self) -> List[AggregateEvent]:
 """
 A list of pending events.
 """
 return self._pending_events

[docs] def trigger_event(
 self,
 event_class: Type[TAggregateEvent],
 **kwargs: Any,
) -> None:
 """
 Triggers domain event of given type, by creating
 an event object and using it to mutate the aggregate.
 """
 # Construct the domain event as the
 # next in the aggregate's sequence.
 # Use counting to generate the sequence.
 next_version = self.version + 1
 try:
 new_event = event_class(# type: ignore
 originator_id=self.id,
 originator_version=next_version,
 timestamp=datetime.now(tz=TZINFO),
 **kwargs,
)
 except TypeError as e:
 raise TypeError(f"Can't construct event {event_class}: {e}")

 # Mutate aggregate with domain event.
 new_event.mutate(self)
 # Append the domain event to pending list.
 self.pending_events.append(new_event)

[docs] def collect_events(self) -> List[AggregateEvent]:
 """
 Collects and returns a list of pending aggregate
 :class:`AggregateEvent` objects.
 """
 collected = []
 while self.pending_events:
 collected.append(self.pending_events.pop(0))
 return collected

[docs]def aggregate(
 cls: Optional[MetaAggregate] = None, *, created_event_name: Optional[str] = None
) -> Union[MetaAggregate, Callable]:
 """
 Converts the class that was passed in to inherit from Aggregate.

 .. code-block:: python

 @aggregate
 class MyAggregate:
 pass

 ...is equivalent to...

 .. code-block:: python

 class MyAggregate(Aggregate):
 pass
 """

 def decorator(cls: Any) -> MetaAggregate:
 if issubclass(cls, Aggregate):
 raise TypeError(f"{cls.__name__} is already an Aggregate")
 bases = cls.__bases__
 if bases == (object,):
 bases = (Aggregate,)
 else:
 bases += (Aggregate,)
 return MetaAggregate(
 cls.__name__,
 bases,
 dict(cls.__dict__),
 created_event_name=created_event_name,
)

 if cls:
 return decorator(cls)
 else:
 return decorator

[docs]class VersionError(Exception):
 """
 Raised when a domain event can't be applied to
 an aggregate due to version mismatch indicating
 the domain event is not the next in the aggregate's
 sequence of events.
 """

[docs]class Snapshot(DomainEvent):
 # noinspection PyUnresolvedReferences
 """
 Snapshots represent the state of an aggregate at a particular
 version.

 Constructor arguments:

 :param UUID originator_id: ID of originating aggregate.
 :param int originator_version: version of originating aggregate.
 :param datetime timestamp: date-time of the event
 :param str topic: string that includes a class and its module
 :param dict state: version of originating aggregate.
 """

 topic: str
 state: dict

 # noinspection PyShadowingNames
[docs] @classmethod
 def take(cls, aggregate: TAggregate) -> "Snapshot":
 """
 Creates a snapshot of the given :class:`Aggregate` object.
 """
 aggregate_state = dict(aggregate.__dict__)
 aggregate_state.pop("_pending_events")
 class_version = getattr(type(aggregate), "class_version", 1)
 if class_version > 1:
 aggregate_state["class_version"] = class_version
 originator_id = aggregate_state.pop("_id")
 originator_version = aggregate_state.pop("_version")
 # noinspection PyArgumentList
 return cls(# type: ignore
 originator_id=originator_id,
 originator_version=originator_version,
 timestamp=datetime.now(tz=TZINFO),
 topic=get_topic(type(aggregate)),
 state=aggregate_state,
)

[docs] def mutate(self, _: None = None) -> TAggregate:
 """
 Reconstructs the snapshotted :class:`Aggregate` object.
 """
 cls = resolve_topic(self.topic)
 assert issubclass(cls, Aggregate)
 aggregate_state = dict(self.state)
 from_version = aggregate_state.pop("class_version", 1)
 class_version = getattr(cls, "class_version", 1)
 while from_version < class_version:
 upcast_name = f"upcast_v{from_version}_v{from_version + 1}"
 upcast = getattr(cls, upcast_name)
 upcast(aggregate_state)
 from_version += 1

 aggregate_state["_id"] = self.originator_id
 aggregate_state["_version"] = self.originator_version
 aggregate_state["_pending_events"] = []
 # noinspection PyShadowingNames
 aggregate = object.__new__(cls)
 aggregate.__dict__.update(aggregate_state)
 return aggregate

 Source code for eventsourcing.interface

import json
from abc import ABC, abstractmethod
from base64 import b64decode, b64encode
from typing import Generic, List
from uuid import UUID

from eventsourcing.application import NotificationLog, Section, TApplication
from eventsourcing.persistence import Notification

[docs]class NotificationLogInterface(ABC):
 """
 Abstract base class for obtaining serialised
 sections of a notification log.
 """

[docs] @abstractmethod
 def get_log_section(self, section_id: str) -> str:
 """
 Returns a serialised :class:`~eventsourcing.application.Section`
 from a notification log.
 """

[docs] @abstractmethod
 def get_notifications(self, start: int, limit: int) -> str:
 """
 Returns a serialised list of :class:`~eventsourcing.persistence.Notification`
 objects from a notification log.
 """

[docs]class NotificationLogJSONService(NotificationLogInterface, Generic[TApplication]):
 """
 Presents serialised sections of a notification log.
 """

[docs] def __init__(self, app: TApplication):
 """
 Initialises service with given application.
 """
 self.app = app

[docs] def get_log_section(self, section_id: str) -> str:
 """
 Returns JSON serialised :class:`~eventsourcing.application.Section`
 from a notification log.
 """
 section = self.app.log[section_id]
 return json.dumps(
 {
 "id": section.id,
 "next_id": section.next_id,
 "items": [
 {
 "id": item.id,
 "originator_id": item.originator_id.hex,
 "originator_version": item.originator_version,
 "topic": item.topic,
 "state": b64encode(item.state).decode("utf8"),
 }
 for item in section.items
],
 }
)

[docs] def get_notifications(self, start: int, limit: int) -> str:
 notifications = self.app.log.select(start, limit)
 return json.dumps(
 [
 {
 "id": notification.id,
 "originator_id": notification.originator_id.hex,
 "originator_version": notification.originator_version,
 "topic": notification.topic,
 "state": b64encode(notification.state).decode("utf8"),
 }
 for notification in notifications
]
)

[docs]class NotificationLogJSONClient(NotificationLog):
 """
 Presents deserialized sections of a notification log.
 """

[docs] def __init__(self, interface: NotificationLogInterface):
 """
 Initialises log with a given interface.
 """
 self.interface = interface

[docs] def __getitem__(self, section_id: str) -> Section:
 body = self.interface.get_log_section(section_id)
 section = json.loads(body)
 return Section(
 id=section["id"],
 next_id=section["next_id"],
 items=[
 Notification(
 id=item["id"],
 originator_id=UUID(item["originator_id"]),
 originator_version=item["originator_version"],
 topic=item["topic"],
 state=b64decode(item["state"].encode("utf8")),
)
 for item in section["items"]
],
)

[docs] def select(self, start: int, limit: int) -> List[Notification]:
 return [
 Notification(
 id=item["id"],
 originator_id=UUID(item["originator_id"]),
 originator_version=item["originator_version"],
 topic=item["topic"],
 state=b64decode(item["state"].encode("utf8")),
)
 for item in json.loads(self.interface.get_notifications(start, limit))
]

 Source code for eventsourcing.persistence

import json
import os
import uuid
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import datetime
from decimal import Decimal
from typing import (
 Any,
 Dict,
 Generic,
 Iterator,
 List,
 Mapping,
 Optional,
 Type,
 cast,
)
from uuid import UUID

from eventsourcing.domain import DomainEvent, TDomainEvent
from eventsourcing.utils import get_topic, resolve_topic, strtobool

[docs]class Transcoding(ABC):
 # noinspection SpellCheckingInspection
 """
 Abstract base class for custom transcodings.
 """

 @property
 @abstractmethod
 def type(self) -> type:
 # noinspection SpellCheckingInspection
 """Object type of transcoded object."""

 @property
 @abstractmethod
 def name(self) -> str:
 """Name of transcoding."""

[docs] @abstractmethod
 def encode(self, obj: Any) -> Any:
 """Encodes given object."""

[docs] @abstractmethod
 def decode(self, data: Any) -> Any:
 """Decodes encoded object."""

[docs]class Transcoder(ABC):
 """
 Abstract base class for transcoders.
 """

[docs] def __init__(self) -> None:
 self.types: Dict[type, Transcoding] = {}
 self.names: Dict[str, Transcoding] = {}

[docs] def register(self, transcoding: Transcoding) -> None:
 """
 Registers given transcoding with the transcoder.
 """
 self.types[transcoding.type] = transcoding
 self.names[transcoding.name] = transcoding

[docs] @abstractmethod
 def encode(self, obj: Any) -> bytes:
 """Encodes obj as bytes."""

[docs] @abstractmethod
 def decode(self, data: bytes) -> Any:
 """Decodes obj from bytes."""

[docs]class JSONTranscoder(Transcoder):
 """
 Extensible transcoder that uses the Python :mod:`json` module.
 """

[docs] def __init__(self) -> None:
 super().__init__()
 self.encoder = json.JSONEncoder(default=self._encode_obj)
 self.decoder = json.JSONDecoder(object_hook=self._decode_obj)

[docs] def encode(self, obj: Any) -> bytes:
 """
 Encodes given object as a bytes array.
 """
 return self.encoder.encode(obj).encode("utf8")

[docs] def decode(self, data: bytes) -> Any:
 """
 Decodes bytes array as previously encoded object.
 """
 return self.decoder.decode(data.decode("utf8"))

 def _encode_obj(self, o: Any) -> Dict[str, Any]:
 try:
 transcoding = self.types[type(o)]
 except KeyError:
 raise TypeError(
 f"Object of type {type(o)} is not "
 "serializable. Please define and register "
 "a custom transcoding for this type."
)
 else:
 return {
 "_type_": transcoding.name,
 "_data_": transcoding.encode(o),
 }

 def _decode_obj(self, d: Dict[str, Any]) -> Any:
 if set(d.keys()) == {
 "_type_",
 "_data_",
 }:
 t = d["_type_"]
 t = cast(str, t)
 try:
 transcoding = self.names[t]
 except KeyError:
 raise TypeError(
 f"Data serialized with name '{t}' is not "
 "deserializable. Please register a "
 "custom transcoding for this type."
)

 return transcoding.decode(d["_data_"])
 else:
 return d

[docs]class UUIDAsHex(Transcoding):
 """
 Transcoding that represents :class:`UUID` objects as hex values.
 """

 type = UUID
 name = "uuid_hex"

[docs] def encode(self, obj: UUID) -> str:
 return obj.hex

[docs] def decode(self, data: str) -> UUID:
 assert isinstance(data, str)
 return UUID(data)

[docs]class DecimalAsStr(Transcoding):
 """
 Transcoding that represents :class:`Decimal` objects as strings.
 """

 type = Decimal
 name = "decimal_str"

[docs] def encode(self, obj: Decimal) -> str:
 return str(obj)

[docs] def decode(self, data: str) -> Decimal:
 return Decimal(data)

[docs]class DatetimeAsISO(Transcoding):
 """
 Transcoding that represents :class:`datetime` objects as ISO strings.
 """

 type = datetime
 name = "datetime_iso"

[docs] def encode(self, obj: datetime) -> str:
 return obj.isoformat()

[docs] def decode(self, data: str) -> datetime:
 assert isinstance(data, str)
 return datetime.fromisoformat(data)

[docs]@dataclass(frozen=True)
class StoredEvent:
 # noinspection PyUnresolvedReferences
 """
 Frozen dataclass that represents :class:`~eventsourcing.domain.DomainEvent`
 objects, such as aggregate :class:`~eventsourcing.domain.Aggregate.Event`
 objects and :class:`~eventsourcing.domain.Snapshot` objects.

 Constructor parameters:

 :param UUID originator_id: ID of the originating aggregate
 :param int originator_version: version of the originating aggregate
 :param str topic: topic of the domain event object class
 :param bytes state: serialised state of the domain event object
 """

 originator_id: uuid.UUID
 originator_version: int
 topic: str
 state: bytes

[docs]class Compressor(ABC):
 """
 Base class for compressors.
 """

[docs] @abstractmethod
 def compress(self, data: bytes) -> bytes:
 """
 Compress bytes.
 """

[docs] @abstractmethod
 def decompress(self, data: bytes) -> bytes:
 """
 Decompress bytes.
 """

[docs]class Cipher(ABC):
 """
 Base class for ciphers.
 """

 # noinspection PyUnusedLocal
[docs] @abstractmethod
 def __init__(self, cipher_key: str):
 """
 Initialises cipher with given key.
 """

[docs] @abstractmethod
 def encrypt(self, plaintext: bytes) -> bytes:
 """
 Return ciphertext for given plaintext.
 """

[docs] @abstractmethod
 def decrypt(self, ciphertext: bytes) -> bytes:
 """
 Return plaintext for given ciphertext.
 """

[docs]class Mapper(Generic[TDomainEvent]):
 """
 Converts between domain event objects and :class:`StoredEvent` objects.

 Uses a :class:`Transcoder`, and optionally a cryptographic cipher and compressor.
 """

[docs] def __init__(
 self,
 transcoder: Transcoder,
 compressor: Optional[Compressor] = None,
 cipher: Optional[Cipher] = None,
):
 self.transcoder = transcoder
 self.compressor = compressor
 self.cipher = cipher

[docs] def from_domain_event(self, domain_event: TDomainEvent) -> StoredEvent:
 """
 Converts the given domain event to a :class:`StoredEvent` object.
 """
 topic: str = get_topic(domain_event.__class__)
 event_state = domain_event.__dict__.copy()
 originator_id = event_state.pop("originator_id")
 originator_version = event_state.pop("originator_version")
 class_version = getattr(type(domain_event), "class_version", 1)
 if class_version > 1:
 event_state["class_version"] = class_version
 stored_state: bytes = self.transcoder.encode(event_state)
 if self.compressor:
 stored_state = self.compressor.compress(stored_state)
 if self.cipher:
 stored_state = self.cipher.encrypt(stored_state)
 return StoredEvent(
 originator_id=originator_id,
 originator_version=originator_version,
 topic=topic,
 state=stored_state,
)

[docs] def to_domain_event(self, stored: StoredEvent) -> TDomainEvent:
 """
 Converts the given :class:`StoredEvent` to a domain event object.
 """
 stored_state: bytes = stored.state
 if self.cipher:
 stored_state = self.cipher.decrypt(stored_state)
 if self.compressor:
 stored_state = self.compressor.decompress(stored_state)
 event_state: dict = self.transcoder.decode(stored_state)
 event_state["originator_id"] = stored.originator_id
 event_state["originator_version"] = stored.originator_version
 cls = resolve_topic(stored.topic)
 assert issubclass(cls, DomainEvent)
 class_version = getattr(cls, "class_version", 1)
 from_version = event_state.pop("class_version", 1)
 while from_version < class_version:
 getattr(cls, f"upcast_v{from_version}_v{from_version + 1}")(event_state)
 from_version += 1

 domain_event = object.__new__(cls)
 domain_event.__dict__.update(event_state)
 return domain_event

[docs]class RecordConflictError(Exception):
 """
 Legacy exception, replaced with IntegrityError.
 """

[docs]class PersistenceError(Exception):
 """
 The base class of the other exceptions in this module.

 Exception class names follow https://www.python.org/dev/peps/pep-0249/#exceptions
 """

[docs]class InterfaceError(PersistenceError):
 """
 Exception raised for errors that are related to the database
 interface rather than the database itself.
 """

[docs]class DatabaseError(PersistenceError):
 """
 Exception raised for errors that are related to the database.
 """

[docs]class DataError(DatabaseError):
 """
 Exception raised for errors that are due to problems with the
 processed data like division by zero, numeric value out of range, etc.
 """

[docs]class OperationalError(DatabaseError):
 """
 Exception raised for errors that are related to the database’s
 operation and not necessarily under the control of the programmer,
 e.g. an unexpected disconnect occurs, the data source name is not
 found, a transaction could not be processed, a memory allocation
 error occurred during processing, etc.
 """

[docs]class IntegrityError(DatabaseError, RecordConflictError):
 """
 Exception raised when the relational integrity of the
 database is affected, e.g. a foreign key check fails.
 """

[docs]class InternalError(DatabaseError):
 """
 Exception raised when the database encounters an internal
 error, e.g. the cursor is not valid anymore, the transaction
 is out of sync, etc.
 """

[docs]class ProgrammingError(DatabaseError):
 """
 Exception raised for programming errors, e.g. table not
 found or already exists, syntax error in the SQL statement,
 wrong number of parameters specified, etc.
 """

[docs]class NotSupportedError(DatabaseError):
 """
 Exception raised in case a method or database API was used
 which is not supported by the database, e.g. calling the
 rollback() method on a connection that does not support
 transaction or has transactions turned off.
 """

[docs]class Recorder(ABC):
 """
 Abstract base class for stored event recorders.
 """

[docs]class AggregateRecorder(Recorder):
 """
 Abstract base class for recorders that record and
 retrieve stored events for domain model aggregates.
 """

[docs] @abstractmethod
 def insert_events(self, stored_events: List[StoredEvent], **kwargs: Any) -> None:
 """
 Writes stored events into database.
 """

 # Todo: Change the implementations to get in batches, in case lots of events.
[docs] @abstractmethod
 def select_events(
 self,
 originator_id: UUID,
 gt: Optional[int] = None,
 lte: Optional[int] = None,
 desc: bool = False,
 limit: Optional[int] = None,
) -> List[StoredEvent]:
 """
 Reads stored events from database.
 """

[docs]@dataclass(frozen=True)
class Notification(StoredEvent):
 """
 Frozen dataclass that represents domain event notifications.
 """

 id: int

[docs]class ApplicationRecorder(AggregateRecorder):
 """
 Abstract base class for recorders that record and
 retrieve stored events for domain model aggregates.

 Extends the behaviour of aggregate recorders by
 recording aggregate events in a total order that
 allows the stored events also to be retrieved
 as event notifications.
 """

[docs] @abstractmethod
 def select_notifications(self, start: int, limit: int) -> List[Notification]:
 """
 Returns a list of event notifications
 from 'start', limited by 'limit'.
 """

[docs] @abstractmethod
 def max_notification_id(self) -> int:
 """
 Returns the maximum notification ID.
 """

[docs]class ProcessRecorder(ApplicationRecorder):
 """
 Abstract base class for recorders that record and
 retrieve stored events for domain model aggregates.

 Extends the behaviour of applications recorders by
 recording aggregate events with tracking information
 that records the position of a processed event
 notification in a notification log.
 """

[docs] @abstractmethod
 def max_tracking_id(self, application_name: str) -> int:
 """
 Returns the last recorded notification ID from given application.
 """

[docs]class EventStore(Generic[TDomainEvent]):
 """
 Stores and retrieves domain events.
 """

[docs] def __init__(
 self,
 mapper: Mapper[TDomainEvent],
 recorder: AggregateRecorder,
):
 self.mapper = mapper
 self.recorder = recorder

[docs] def put(self, events: List[TDomainEvent], **kwargs: Any) -> None:
 """
 Stores domain events in aggregate sequence.
 """
 self.recorder.insert_events(
 list(
 map(
 self.mapper.from_domain_event,
 events,
)
),
 **kwargs,
)

[docs] def get(
 self,
 originator_id: UUID,
 gt: Optional[int] = None,
 lte: Optional[int] = None,
 desc: bool = False,
 limit: Optional[int] = None,
) -> Iterator[TDomainEvent]:
 """
 Retrieves domain events from aggregate sequence.
 """
 return map(
 self.mapper.to_domain_event,
 self.recorder.select_events(
 originator_id=originator_id,
 gt=gt,
 lte=lte,
 desc=desc,
 limit=limit,
),
)

[docs]class InfrastructureFactory(ABC):
 """
 Abstract base class for infrastructure factories.
 """

 TOPIC = "INFRASTRUCTURE_FACTORY"
 MAPPER_TOPIC = "MAPPER_TOPIC"
 CIPHER_TOPIC = "CIPHER_TOPIC"
 CIPHER_KEY = "CIPHER_KEY"
 COMPRESSOR_TOPIC = "COMPRESSOR_TOPIC"
 IS_SNAPSHOTTING_ENABLED = "IS_SNAPSHOTTING_ENABLED"

[docs] @classmethod
 def construct(
 cls,
 application_name: str = "",
 env: Optional[Mapping] = None,
) -> "InfrastructureFactory":
 """
 Constructs concrete infrastructure factory for given
 named application. Reads and resolves infrastructure
 factory class topic from environment variable 'INFRASTRUCTURE_FACTORY'.
 """
 # noinspection SpellCheckingInspection
 env = env if env is not None else os.environ
 topic = env.get(
 cls.TOPIC,
 "eventsourcing.popo:Factory",
)
 try:
 factory_cls = resolve_topic(topic)
 except (ModuleNotFoundError, AttributeError):
 raise EnvironmentError(
 "Failed to resolve "
 "infrastructure factory topic: "
 f"'{topic}' from environment "
 f"variable '{cls.TOPIC}'"
)

 if not issubclass(factory_cls, InfrastructureFactory):
 raise AssertionError(f"Not an infrastructure factory: {topic}")
 return factory_cls(application_name=application_name, env=env)

[docs] def __init__(self, application_name: str, env: Mapping):
 """
 Initialises infrastructure factory object with given application name.
 """
 self.application_name = application_name
 self.env = env

 # noinspection SpellCheckingInspection
[docs] def getenv(
 self, key: str, default: Optional[str] = None, application_name: str = ""
) -> Optional[str]:
 """
 Returns value of environment variable defined by given key.
 """
 if not application_name:
 application_name = self.application_name
 keys = [
 application_name.upper() + "_" + key,
 key,
]
 for key in keys:
 value = self.env.get(key)
 if value is not None:
 return value
 return default

[docs] def mapper(
 self,
 transcoder: Transcoder,
 application_name: str = "",
) -> Mapper:
 """
 Constructs a mapper.
 """
 return Mapper(
 transcoder=transcoder,
 cipher=self.cipher(application_name),
 compressor=self.compressor(application_name),
)

[docs] def cipher(self, application_name: str) -> Optional[Cipher]:
 """
 Reads environment variables 'CIPHER_TOPIC'
 and 'CIPHER_KEY' to decide whether or not
 to construct a cipher.
 """
 cipher_topic = self.getenv(self.CIPHER_TOPIC, application_name=application_name)
 cipher_key = self.getenv(self.CIPHER_KEY, application_name=application_name)
 cipher: Optional[Cipher] = None
 if cipher_topic:
 if not cipher_key:
 raise EnvironmentError(
 f"'{self.CIPHER_KEY}' not set in env, "
 f"although '{self.CIPHER_TOPIC}' was set"
)
 elif cipher_key:
 cipher_topic = "eventsourcing.cipher:AESCipher"

 if cipher_topic and cipher_key:
 cipher_cls: Type[Cipher] = resolve_topic(cipher_topic)
 cipher = cipher_cls(cipher_key=cipher_key)

 return cipher

[docs] def compressor(self, application_name: str) -> Optional[Compressor]:
 """
 Reads environment variable 'COMPRESSOR_TOPIC' to
 decide whether or not to construct a compressor.
 """
 compressor: Optional[Compressor] = None
 compressor_topic = self.getenv(
 self.COMPRESSOR_TOPIC, application_name=application_name
)
 if compressor_topic:
 compressor_cls: Type[Compressor] = resolve_topic(compressor_topic)
 if callable(compressor_cls):
 compressor = compressor_cls()
 else:
 compressor = compressor_cls
 return compressor

[docs] @staticmethod
 def event_store(**kwargs: Any) -> EventStore:
 """
 Constructs an event store.
 """
 return EventStore(**kwargs)

[docs] @abstractmethod
 def aggregate_recorder(self, purpose: str = "events") -> AggregateRecorder:
 """
 Constructs an aggregate recorder.
 """

[docs] @abstractmethod
 def application_recorder(self) -> ApplicationRecorder:
 """
 Constructs an application recorder.
 """

[docs] @abstractmethod
 def process_recorder(self) -> ProcessRecorder:
 """
 Constructs a process recorder.
 """

[docs] def is_snapshotting_enabled(self) -> bool:
 """
 Decides whether or not snapshotting is enabled by
 reading environment variable 'IS_SNAPSHOTTING_ENABLED'.
 Snapshotting is not enabled by default.
 """
 default = "no"
 return bool(
 strtobool(self.getenv(self.IS_SNAPSHOTTING_ENABLED, default) or default)
)

[docs]@dataclass(frozen=True)
class Tracking:
 """
 Frozen dataclass representing the position of a domain
 event :class:`Notification` in an application's notification log.
 """

 application_name: str
 notification_id: int

 Source code for eventsourcing.popo

from collections import defaultdict
from threading import Lock
from typing import Any, Dict, Iterable, List, Optional
from uuid import UUID

from eventsourcing.persistence import (
 AggregateRecorder,
 ApplicationRecorder,
 InfrastructureFactory,
 IntegrityError,
 Notification,
 ProcessRecorder,
 StoredEvent,
 Tracking,
)

[docs]class POPOAggregateRecorder(AggregateRecorder):
[docs] def __init__(self) -> None:
 self.stored_events: List[StoredEvent] = []
 self.stored_events_index: Dict[UUID, Dict[int, int]] = defaultdict(dict)
 self.database_lock = Lock()

[docs] def insert_events(self, stored_events: List[StoredEvent], **kwargs: Any) -> None:
 with self.database_lock:
 self.assert_uniqueness(stored_events, **kwargs)
 self.update_table(stored_events, **kwargs)

 def assert_uniqueness(
 self, stored_events: List[StoredEvent], **kwargs: Any
) -> None:
 new = set()
 for s in stored_events:
 # Check events don't already exist.
 if s.originator_version in self.stored_events_index[s.originator_id]:
 raise IntegrityError()
 new.add((s.originator_id, s.originator_version))
 # Check new events are unique.
 if len(new) < len(stored_events):
 raise IntegrityError()

 def update_table(self, stored_events: List[StoredEvent], **kwargs: Any) -> None:
 for s in stored_events:
 self.stored_events.append(s)
 self.stored_events_index[s.originator_id][s.originator_version] = (
 len(self.stored_events) - 1
)

[docs] def select_events(
 self,
 originator_id: UUID,
 gt: Optional[int] = None,
 lte: Optional[int] = None,
 desc: bool = False,
 limit: Optional[int] = None,
) -> List[StoredEvent]:

 with self.database_lock:
 results = []

 index = self.stored_events_index[originator_id]
 positions: Iterable = index.keys()
 if desc:
 positions = reversed(list(positions))
 for p in positions:
 if gt is not None:
 if not p > gt:
 continue
 if lte is not None:
 if not p <= lte:
 continue
 s = self.stored_events[index[p]]
 results.append(s)
 if len(results) == limit:
 break
 return results

[docs]class POPOApplicationRecorder(ApplicationRecorder, POPOAggregateRecorder):
[docs] def select_notifications(self, start: int, limit: int) -> List[Notification]:
 with self.database_lock:
 results = []
 i = start - 1
 j = i + limit
 for notification_id, s in enumerate(self.stored_events[i:j], start):
 n = Notification(
 id=notification_id,
 originator_id=s.originator_id,
 originator_version=s.originator_version,
 topic=s.topic,
 state=s.state,
)
 results.append(n)
 return results

[docs] def max_notification_id(self) -> int:
 with self.database_lock:
 return len(self.stored_events)

[docs]class POPOProcessRecorder(ProcessRecorder, POPOApplicationRecorder):
[docs] def __init__(self) -> None:
 super().__init__()
 self.tracking_table: Dict[str, int] = defaultdict(None)

 def assert_uniqueness(
 self, stored_events: List[StoredEvent], **kwargs: Any
) -> None:
 super().assert_uniqueness(stored_events, **kwargs)
 tracking: Optional[Tracking] = kwargs.get("tracking", None)
 if tracking:
 last = self.tracking_table.get(tracking.application_name, 0)
 if tracking.notification_id <= last:
 raise IntegrityError()

 def update_table(self, stored_events: List[StoredEvent], **kwargs: Any) -> None:
 super().update_table(stored_events, **kwargs)
 tracking: Optional[Tracking] = kwargs.get("tracking", None)
 if tracking:
 self.tracking_table[tracking.application_name] = tracking.notification_id

[docs] def max_tracking_id(self, application_name: str) -> int:
 with self.database_lock:
 try:
 return self.tracking_table[application_name]
 except KeyError:
 return 0

[docs]class Factory(InfrastructureFactory):
[docs] def aggregate_recorder(self, purpose: str = "events") -> AggregateRecorder:
 return POPOAggregateRecorder()

[docs] def application_recorder(self) -> ApplicationRecorder:
 return POPOApplicationRecorder()

[docs] def process_recorder(self) -> ProcessRecorder:
 return POPOProcessRecorder()

 Source code for eventsourcing.postgres

import threading
from itertools import chain
from threading import Event, Timer
from types import TracebackType
from typing import Any, Dict, List, Mapping, Optional, Type
from uuid import UUID

import psycopg2
import psycopg2.errors
import psycopg2.extras
from psycopg2.errorcodes import DUPLICATE_PREPARED_STATEMENT
from psycopg2.extensions import connection, cursor

from eventsourcing.persistence import (
 AggregateRecorder,
 ApplicationRecorder,
 DatabaseError,
 DataError,
 InfrastructureFactory,
 IntegrityError,
 InterfaceError,
 InternalError,
 Notification,
 NotSupportedError,
 OperationalError,
 PersistenceError,
 ProcessRecorder,
 ProgrammingError,
 StoredEvent,
 Tracking,
)
from eventsourcing.utils import retry, strtobool

psycopg2.extras.register_uuid()

class Connection:
 def __init__(self, c: connection, max_age: Optional[float]):
 self.c = c
 self.max_age = max_age
 self.is_idle = Event()
 self.is_closing = Event()
 self.timer: Optional[Timer]
 if max_age is not None:
 self.timer = Timer(interval=max_age, function=self.close_on_timer)
 self.timer.setDaemon(True)
 self.timer.start()
 else:
 self.timer = None
 self.is_prepared: Dict[str, bool] = {}

 def cursor(self) -> cursor:
 return self.c.cursor(cursor_factory=psycopg2.extras.DictCursor)

 def rollback(self) -> None:
 self.c.rollback()

 def commit(self) -> None:
 self.c.commit()

 def close_on_timer(self) -> None:
 self.close()

 def close(self, timeout: Optional[float] = None) -> None:
 if self.timer is not None:
 self.timer.cancel()
 self.is_closing.set()
 self.is_idle.wait(timeout=timeout)
 self.c.close()

 @property
 def is_closed(self) -> bool:
 return self.c.closed

class Transaction:
 # noinspection PyShadowingNames
 def __init__(self, c: Connection, commit: bool):
 self.c = c
 self.commit = commit
 self.has_entered = False

 def __enter__(self) -> "Connection":
 self.has_entered = True
 return self.c

 def __exit__(
 self,
 exc_type: Type[BaseException],
 exc_val: BaseException,
 exc_tb: TracebackType,
) -> None:
 try:
 if exc_val:
 self.c.rollback()
 raise exc_val
 elif not self.commit:
 self.c.rollback()
 else:
 self.c.commit()
 except psycopg2.InterfaceError as e:
 self.c.close(timeout=0)
 raise InterfaceError(e)
 except psycopg2.DataError as e:
 raise DataError(e)
 except psycopg2.OperationalError as e:
 raise OperationalError(e)
 except psycopg2.IntegrityError as e:
 raise IntegrityError(e)
 except psycopg2.InternalError as e:
 raise InternalError(e)
 except psycopg2.ProgrammingError as e:
 raise ProgrammingError(e)
 except psycopg2.NotSupportedError as e:
 raise NotSupportedError(e)
 except psycopg2.DatabaseError as e:
 raise DatabaseError(e)
 except psycopg2.Error as e:
 raise PersistenceError(e)
 finally:
 self.c.is_idle.set()

 def __del__(self) -> None:
 if not self.has_entered:
 self.c.is_idle.set()
 raise RuntimeWarning(f"Transaction {self} was not used as context manager")

class PostgresDatastore:
 def __init__(
 self,
 dbname: str,
 host: str,
 port: str,
 user: str,
 password: str,
 conn_max_age: Optional[float] = None,
 pre_ping: bool = False,
 lock_timeout: int = 0,
 idle_in_transaction_session_timeout: int = 0,
):
 self.dbname = dbname
 self.host = host
 self.port = port
 self.user = user
 self.password = password
 self.conn_max_age = conn_max_age
 self.pre_ping = pre_ping
 self.lock_timeout = lock_timeout
 self.idle_in_transaction_session_timeout = idle_in_transaction_session_timeout
 self._connections: Dict[int, Connection] = {}

 def transaction(self, commit: bool) -> Transaction:
 return Transaction(self.get_connection(), commit=commit)

 def get_connection(self) -> Connection:
 thread_id = threading.get_ident()
 try:
 conn = self._connections[thread_id]
 except KeyError:
 conn = self._create_connection(thread_id)
 else:
 conn.is_idle.clear()
 if conn.is_closing.is_set() or conn.is_closed:
 conn = self._create_connection(thread_id)
 elif self.pre_ping:
 try:
 conn.cursor().execute("SELECT 1")
 except psycopg2.Error:
 conn = self._create_connection(thread_id)
 return conn

 def _create_connection(self, thread_id: int) -> Connection:
 # Make a connection to a Postgres database.
 try:
 psycopg_c = psycopg2.connect(
 dbname=self.dbname,
 host=self.host,
 port=self.port,
 user=self.user,
 password=self.password,
 connect_timeout=5,
)
 psycopg_c.cursor().execute(
 f"SET idle_in_transaction_session_timeout = "
 f"'{self.idle_in_transaction_session_timeout}s'"
)
 except psycopg2.Error as e:
 raise InterfaceError(e)
 else:
 c = Connection(
 psycopg_c,
 max_age=self.conn_max_age,
)
 self._connections[thread_id] = c

 return c

 def close_connection(self) -> None:
 thread_id = threading.get_ident()
 try:
 c = self._connections.pop(thread_id)
 except KeyError:
 pass
 else:
 c.close()

 def close_all_connections(self, timeout: Optional[float] = None) -> None:
 for c in self._connections.values():
 c.close(timeout=timeout)
 self._connections.clear()

 def __del__(self) -> None:
 self.close_all_connections(timeout=1)

noinspection SqlResolve
[docs]class PostgresAggregateRecorder(AggregateRecorder):
[docs] def __init__(self, datastore: PostgresDatastore, events_table_name: str):
 self.datastore = datastore
 self.events_table_name = events_table_name
 self.create_table_statements = self.construct_create_table_statements()
 self.insert_events_statement = (
 f"INSERT INTO {self.events_table_name} VALUES ($1, $2, $3, $4)"
)
 self.insert_events_statement_name = f"insert_{events_table_name}"
 self.select_events_statement = (
 f"SELECT * FROM {self.events_table_name} WHERE originator_id = $1"
)
 self.lock_statements = [
 f"SET LOCAL lock_timeout = '{self.datastore.lock_timeout}s'",
 f"LOCK TABLE {self.events_table_name} IN EXCLUSIVE MODE",
]

 def construct_create_table_statements(self) -> List[str]:
 statement = (
 "CREATE TABLE IF NOT EXISTS "
 f"{self.events_table_name} ("
 "originator_id uuid NOT NULL, "
 "originator_version integer NOT NULL, "
 "topic text, "
 "state bytea, "
 "PRIMARY KEY "
 "(originator_id, originator_version)) "
 "WITH (autovacuum_enabled=false)"
)
 return [statement]

 def create_table(self) -> None:
 with self.datastore.transaction(commit=True) as conn:
 with conn.cursor() as c:
 for statement in self.create_table_statements:
 c.execute(statement)
 pass # for Coverage 5.5 bug with CPython 3.10.0rc1

[docs] @retry(InterfaceError, max_attempts=10, wait=0.2)
 def insert_events(self, stored_events: List[StoredEvent], **kwargs: Any) -> None:
 self._prepare_insert_events()
 with self.datastore.transaction(commit=True) as conn:
 with conn.cursor() as c:
 self._insert_events(c, stored_events, **kwargs)

 def _prepare_insert_events(self) -> None:
 self._prepare(
 self.insert_events_statement_name,
 self.insert_events_statement,
)

 def _prepare(self, statement_name: str, statement: str) -> None:
 if not self.datastore.get_connection().is_prepared.get(statement_name):
 with self.datastore.transaction(commit=True) as conn:
 with conn.cursor() as c:
 try:
 c.execute(f"PREPARE {statement_name} AS " + statement)
 except psycopg2.errors.lookup(DUPLICATE_PREPARED_STATEMENT):
 pass
 conn.is_prepared[statement_name] = True

 def _insert_events(
 self,
 c: cursor,
 stored_events: List[StoredEvent],
 **kwargs: Any,
) -> None:
 # Acquire "EXCLUSIVE" table lock, to serialize inserts so that
 # insertion of notification IDs is monotonic for notification log
 # readers. We want concurrent transactions to commit inserted
 # notification_id values in order, and by locking the table for writes,
 # it can be guaranteed. The EXCLUSIVE lock mode does not block
 # the ACCESS SHARE lock which is acquired during SELECT statements,
 # so the table can be read concurrently. However INSERT normally
 # just acquires ROW EXCLUSIVE locks, which risks interleaving of
 # many inserts in one transaction with many insert in another
 # transaction. Since one transaction will commit before another,
 # the possibility arises for readers that are tailing a notification
 # log to miss items inserted later but with lower notification IDs.
 # https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-TABLES
 # https://www.postgresql.org/docs/9.1/sql-lock.html
 # https://stackoverflow.com/questions/45866187/guarantee-monotonicity-of
 # -postgresql-serial-column-values-by-commit-order

 len_stored_events = len(stored_events)

 # Just don't do anything if there is nothing to do.
 if len_stored_events == 0:
 return

 # Mogrify the table lock statements.
 lock_sqls = (c.mogrify(s) for s in self.lock_statements)

 # Prepare the commands before getting the table lock.
 page_size = 500
 pages = [
 (
 c.mogrify(
 f"EXECUTE {self.insert_events_statement_name}(%s, %s, %s, %s)",
 (
 stored_event.originator_id,
 stored_event.originator_version,
 stored_event.topic,
 stored_event.state,
),
)
 for stored_event in page
)
 for page in (
 stored_events[ndx : min(ndx + page_size, len_stored_events)]
 for ndx in range(0, len_stored_events, page_size)
)
]
 commands = [
 b";".join(page) for page in chain([chain(lock_sqls, pages[0])], pages[1:])
]

 # Execute the commands.
 for command in commands:
 c.execute(command)

[docs] @retry(InterfaceError, max_attempts=10, wait=0.2)
 def select_events(
 self,
 originator_id: UUID,
 gt: Optional[int] = None,
 lte: Optional[int] = None,
 desc: bool = False,
 limit: Optional[int] = None,
) -> List[StoredEvent]:
 parts = [self.select_events_statement]
 params: List[Any] = [originator_id]
 statement_name = f"select_{self.events_table_name}"
 if gt is not None:
 params.append(gt)
 parts.append(f"AND originator_version > ${len(params)}")
 statement_name += "_gt"
 if lte is not None:
 params.append(lte)
 parts.append(f"AND originator_version <= ${len(params)}")
 statement_name += "_lte"
 parts.append("ORDER BY originator_version")
 if desc is False:
 parts.append("ASC")
 else:
 parts.append("DESC")
 statement_name += "_desc"
 if limit is not None:
 params.append(limit)
 parts.append(f"LIMIT ${len(params)}")
 statement_name += "_limit"
 statement = " ".join(parts)
 self._prepare(statement_name, statement)

 stored_events = []
 with self.datastore.transaction(commit=False) as conn:
 with conn.cursor() as c:
 c.execute(
 f"EXECUTE {statement_name}({', '.join(['%s' for _ in params])})",
 params,
)
 for row in c.fetchall():
 stored_events.append(
 StoredEvent(
 originator_id=row["originator_id"],
 originator_version=row["originator_version"],
 topic=row["topic"],
 state=bytes(row["state"]),
)
)
 pass # for Coverage 5.5 bug with CPython 3.10.0rc1
 return stored_events

noinspection SqlResolve
[docs]class PostgresApplicationRecorder(
 PostgresAggregateRecorder,
 ApplicationRecorder,
):
[docs] def __init__(
 self,
 datastore: PostgresDatastore,
 events_table_name: str = "stored_events",
):
 super().__init__(datastore, events_table_name)
 self.select_notifications_statement = (
 "SELECT * "
 f"FROM {self.events_table_name} "
 "WHERE notification_id>=$1 "
 "ORDER BY notification_id "
 "LIMIT $2"
)
 self.select_notifications_statement_name = (
 f"select_notifications_{events_table_name}"
)

 self.max_notification_id_statement = (
 f"SELECT MAX(notification_id) FROM {self.events_table_name}"
)
 self.max_notification_id_statement_name = (
 f"max_notification_id_{events_table_name}"
)

 def construct_create_table_statements(self) -> List[str]:
 statements = [
 "CREATE TABLE IF NOT EXISTS "
 f"{self.events_table_name} ("
 "originator_id uuid NOT NULL, "
 "originator_version integer NOT NULL, "
 "topic text, "
 "state bytea, "
 "notification_id BIGSERIAL, "
 "PRIMARY KEY "
 "(originator_id, originator_version)) "
 "WITH (autovacuum_enabled=false)",
 f"CREATE UNIQUE INDEX IF NOT EXISTS "
 f"{self.events_table_name}_notification_id_idx "
 f"ON {self.events_table_name} (notification_id ASC);",
]
 return statements

[docs] @retry(InterfaceError, max_attempts=10, wait=0.2)
 def select_notifications(self, start: int, limit: int) -> List[Notification]:
 """
 Returns a list of event notifications
 from 'start', limited by 'limit'.
 """
 statement_name = self.select_notifications_statement_name
 self._prepare(statement_name, self.select_notifications_statement)

 notifications = []
 with self.datastore.transaction(commit=False) as conn:
 with conn.cursor() as c:
 c.execute(
 f"EXECUTE {statement_name}(%s, %s)",
 (start, limit),
)
 for row in c.fetchall():
 notifications.append(
 Notification(
 id=row["notification_id"],
 originator_id=row["originator_id"],
 originator_version=row["originator_version"],
 topic=row["topic"],
 state=bytes(row["state"]),
)
)
 pass # for Coverage 5.5 bug with CPython 3.10.0rc1
 return notifications

[docs] @retry(InterfaceError, max_attempts=10, wait=0.2)
 def max_notification_id(self) -> int:
 """
 Returns the maximum notification ID.
 """
 statement_name = self.max_notification_id_statement_name
 self._prepare(statement_name, self.max_notification_id_statement)

 with self.datastore.transaction(commit=False) as conn:
 with conn.cursor() as c:
 c.execute(
 f"EXECUTE {statement_name}",
)
 max_id = c.fetchone()[0] or 0
 return max_id

[docs]class PostgresProcessRecorder(
 PostgresApplicationRecorder,
 ProcessRecorder,
):
[docs] def __init__(
 self,
 datastore: PostgresDatastore,
 events_table_name: str,
 tracking_table_name: str,
):
 self.tracking_table_name = tracking_table_name
 super().__init__(datastore, events_table_name)
 self.insert_tracking_statement = (
 f"INSERT INTO {self.tracking_table_name} VALUES ($1, $2)"
)
 self.insert_tracking_statement_name = f"insert_{tracking_table_name}"
 self.max_tracking_id_statement = (
 "SELECT MAX(notification_id) "
 f"FROM {self.tracking_table_name} "
 "WHERE application_name=$1"
)
 self.max_tracking_id_statement_name = f"max_tracking_id_{tracking_table_name}"

 def construct_create_table_statements(self) -> List[str]:
 statements = super().construct_create_table_statements()
 statements.append(
 "CREATE TABLE IF NOT EXISTS "
 f"{self.tracking_table_name} ("
 "application_name text, "
 "notification_id int, "
 "PRIMARY KEY "
 "(application_name, notification_id))"
)
 return statements

[docs] @retry(InterfaceError, max_attempts=10, wait=0.2)
 def max_tracking_id(self, application_name: str) -> int:
 statement_name = self.max_tracking_id_statement_name
 self._prepare(statement_name, self.max_tracking_id_statement)

 with self.datastore.transaction(commit=False) as conn:
 with conn.cursor() as c:
 c.execute(
 f"EXECUTE {statement_name}(%s)",
 (application_name,),
)
 max_id = c.fetchone()[0] or 0
 return max_id

 def _prepare_insert_events(self) -> None:
 super()._prepare_insert_events()
 self._prepare(
 self.insert_tracking_statement_name, self.insert_tracking_statement
)

 def _insert_events(
 self,
 c: cursor,
 stored_events: List[StoredEvent],
 **kwargs: Any,
) -> None:
 super()._insert_events(c, stored_events, **kwargs)
 tracking: Optional[Tracking] = kwargs.get("tracking", None)
 if tracking is not None:
 c.execute(
 f"EXECUTE {self.insert_tracking_statement_name}(%s, %s)",
 (
 tracking.application_name,
 tracking.notification_id,
),
)

[docs]class Factory(InfrastructureFactory):
 POSTGRES_DBNAME = "POSTGRES_DBNAME"
 POSTGRES_HOST = "POSTGRES_HOST"
 POSTGRES_PORT = "POSTGRES_PORT"
 POSTGRES_USER = "POSTGRES_USER"
 POSTGRES_PASSWORD = "POSTGRES_PASSWORD"
 POSTGRES_CONN_MAX_AGE = "POSTGRES_CONN_MAX_AGE"
 POSTGRES_PRE_PING = "POSTGRES_PRE_PING"
 POSTGRES_LOCK_TIMEOUT = "POSTGRES_LOCK_TIMEOUT"
 POSTGRES_IDLE_IN_TRANSACTION_SESSION_TIMEOUT = (
 "POSTGRES_IDLE_IN_TRANSACTION_SESSION_TIMEOUT"
)
 CREATE_TABLE = "CREATE_TABLE"

[docs] def __init__(self, application_name: str, env: Mapping):
 super().__init__(application_name, env)
 dbname = self.getenv(self.POSTGRES_DBNAME)
 if dbname is None:
 raise EnvironmentError(
 "Postgres database name not found "
 "in environment with key "
 f"'{self.POSTGRES_DBNAME}'"
)

 host = self.getenv(self.POSTGRES_HOST)
 if host is None:
 raise EnvironmentError(
 "Postgres host not found "
 "in environment with key "
 f"'{self.POSTGRES_HOST}'"
)

 port = self.getenv(self.POSTGRES_PORT) or "5432"

 user = self.getenv(self.POSTGRES_USER)
 if user is None:
 raise EnvironmentError(
 "Postgres user not found "
 "in environment with key "
 f"'{self.POSTGRES_USER}'"
)

 password = self.getenv(self.POSTGRES_PASSWORD)
 if password is None:
 raise EnvironmentError(
 "Postgres password not found "
 "in environment with key "
 f"'{self.POSTGRES_PASSWORD}'"
)

 conn_max_age: Optional[float]
 conn_max_age_str = self.getenv(self.POSTGRES_CONN_MAX_AGE)
 if conn_max_age_str is None:
 conn_max_age = None
 elif conn_max_age_str == "":
 conn_max_age = None
 else:
 try:
 conn_max_age = float(conn_max_age_str)
 except ValueError:
 raise EnvironmentError(
 f"Postgres environment value for key "
 f"'{self.POSTGRES_CONN_MAX_AGE}' is invalid. "
 f"If set, a float or empty string is expected: "
 f"'{conn_max_age_str}'"
)

 pre_ping = strtobool(self.getenv(self.POSTGRES_PRE_PING) or "no")

 lock_timeout_str = self.getenv(self.POSTGRES_LOCK_TIMEOUT) or "0"

 try:
 lock_timeout = int(lock_timeout_str)
 except ValueError:
 raise EnvironmentError(
 f"Postgres environment value for key "
 f"'{self.POSTGRES_LOCK_TIMEOUT}' is invalid. "
 f"If set, an integer or empty string is expected: "
 f"'{lock_timeout_str}'"
)

 idle_in_transaction_session_timeout_str = (
 self.getenv(self.POSTGRES_IDLE_IN_TRANSACTION_SESSION_TIMEOUT) or "0"
)

 try:
 idle_in_transaction_session_timeout = int(
 idle_in_transaction_session_timeout_str
)
 except ValueError:
 raise EnvironmentError(
 f"Postgres environment value for key "
 f"'{self.POSTGRES_IDLE_IN_TRANSACTION_SESSION_TIMEOUT}' is invalid. "
 f"If set, an integer or empty string is expected: "
 f"'{idle_in_transaction_session_timeout_str}'"
)

 self.datastore = PostgresDatastore(
 dbname=dbname,
 host=host,
 port=port,
 user=user,
 password=password,
 conn_max_age=conn_max_age,
 pre_ping=pre_ping,
 lock_timeout=lock_timeout,
 idle_in_transaction_session_timeout=idle_in_transaction_session_timeout,
)

[docs] def aggregate_recorder(self, purpose: str = "events") -> AggregateRecorder:
 prefix = self.application_name.lower() or "stored"
 events_table_name = prefix + "_" + purpose
 recorder = PostgresAggregateRecorder(
 datastore=self.datastore, events_table_name=events_table_name
)
 if self.env_create_table():
 recorder.create_table()
 return recorder

[docs] def application_recorder(self) -> ApplicationRecorder:
 prefix = self.application_name.lower() or "stored"
 events_table_name = prefix + "_events"
 recorder = PostgresApplicationRecorder(
 datastore=self.datastore, events_table_name=events_table_name
)
 if self.env_create_table():
 recorder.create_table()
 return recorder

[docs] def process_recorder(self) -> ProcessRecorder:
 prefix = self.application_name.lower() or "stored"
 events_table_name = prefix + "_events"
 prefix = self.application_name.lower() or "notification"
 tracking_table_name = prefix + "_tracking"
 recorder = PostgresProcessRecorder(
 datastore=self.datastore,
 events_table_name=events_table_name,
 tracking_table_name=tracking_table_name,
)
 if self.env_create_table():
 recorder.create_table()
 return recorder

 def env_create_table(self) -> bool:
 default = "yes"
 return bool(strtobool(self.getenv(self.CREATE_TABLE) or default))

 Source code for eventsourcing.sqlite

import sqlite3
import threading
from sqlite3 import Connection, Cursor
from threading import Lock
from types import TracebackType
from typing import Any, Dict, List, Mapping, Optional, Type
from uuid import UUID

from eventsourcing.persistence import (
 AggregateRecorder,
 ApplicationRecorder,
 DatabaseError,
 DataError,
 InfrastructureFactory,
 IntegrityError,
 InterfaceError,
 InternalError,
 Notification,
 NotSupportedError,
 OperationalError,
 PersistenceError,
 ProcessRecorder,
 ProgrammingError,
 StoredEvent,
 Tracking,
)
from eventsourcing.utils import strtobool

SQLITE3_DEFAULT_LOCK_TIMEOUT = 5

class Transaction:
 def __init__(
 self, connection: Connection, commit: bool = False, lock: Optional[Lock] = None
):
 self.connection = connection
 self.commit = commit
 self.lock = lock

 def __enter__(self) -> Cursor:
 if self.lock:
 self.lock.acquire()
 # We must issue a "BEGIN" explicitly
 # when running in auto-commit mode.
 self.connection.execute("BEGIN")
 self.cursor = self.connection.cursor()
 return self.cursor

 def __exit__(
 self,
 exc_type: Type[BaseException],
 exc_val: BaseException,
 exc_tb: TracebackType,
) -> None:
 try:
 self.cursor.close()
 if exc_val:
 # Roll back all changes
 # if an exception occurs.
 self.connection.rollback()
 raise exc_val
 elif not self.commit:
 self.connection.rollback()
 else:
 self.connection.commit()
 except sqlite3.InterfaceError as e:
 raise InterfaceError(e)
 except sqlite3.DataError as e:
 raise DataError(e)
 except sqlite3.OperationalError as e:
 raise OperationalError(e)
 except sqlite3.IntegrityError as e:
 raise IntegrityError(e)
 except sqlite3.InternalError as e:
 raise InternalError(e)
 except sqlite3.ProgrammingError as e:
 raise ProgrammingError(e)
 except sqlite3.NotSupportedError as e:
 raise NotSupportedError(e)
 except sqlite3.DatabaseError as e:
 raise DatabaseError(e)
 except sqlite3.Error as e:
 raise PersistenceError(e)
 finally:
 if self.lock:
 self.lock.release()

class SQLiteDatastore:
 def __init__(self, db_name: str, lock_timeout: Optional[int] = None):
 self.db_name = db_name
 self.is_sqlite_memory_mode = self.detect_memory_mode(db_name)
 self.lock: Optional[Lock] = None
 if self.is_sqlite_memory_mode:
 self.lock = Lock()

 self.connections: Dict[int, Connection] = {}
 self.is_journal_mode_wal = False
 self.journal_mode_was_changed_to_wal = False
 self.lock_timeout = lock_timeout

 def detect_memory_mode(self, db_name: str) -> bool:
 return bool(db_name) and (":memory:" in db_name or "mode=memory" in db_name)

 def transaction(self, commit: bool = False) -> Transaction:
 c = self.get_connection()
 return Transaction(c, commit, self.lock)

 def get_connection(self) -> Connection:
 thread_id = threading.get_ident()
 try:
 c = self.connections[thread_id]
 except KeyError:
 c = self.create_connection()
 self.connections[thread_id] = c
 return c

 def create_connection(self) -> Connection:
 # Make a connection to an SQLite database.
 try:
 c = sqlite3.connect(
 database=self.db_name,
 uri=True,
 check_same_thread=False,
 isolation_level=None, # Auto-commit mode.
 cached_statements=True,
 timeout=self.lock_timeout or SQLITE3_DEFAULT_LOCK_TIMEOUT,
)
 except (sqlite3.Error, TypeError) as e:
 raise InterfaceError(e)

 # Use WAL (write-ahead log) mode if file-based database.
 if not self.is_sqlite_memory_mode:
 if not self.is_journal_mode_wal:
 cursor = c.cursor()
 cursor.execute("PRAGMA journal_mode;")
 mode = cursor.fetchone()[0]
 if mode.lower() == "wal":
 self.is_journal_mode_wal = True
 else:
 cursor.execute("PRAGMA journal_mode=WAL;")
 self.is_journal_mode_wal = True
 self.journal_mode_was_changed_to_wal = True

 # Set the row factory.
 c.row_factory = sqlite3.Row

 # Return the connection.
 return c

 def close_all_connections(self) -> None:
 for c in self.connections.values():
 c.close()
 self.connections.clear()

 def __del__(self) -> None:
 self.close_all_connections()

[docs]class SQLiteAggregateRecorder(AggregateRecorder):
[docs] def __init__(
 self,
 datastore: SQLiteDatastore,
 events_table_name: str = "stored_events",
):
 assert isinstance(datastore, SQLiteDatastore)
 self.datastore = datastore
 self.events_table_name = events_table_name
 self.create_table_statements = self.construct_create_table_statements()
 self.insert_events_statement = (
 f"INSERT INTO {self.events_table_name} VALUES (?,?,?,?)"
)
 # noinspection SqlResolve
 self.select_events_statement = (
 "SELECT * " f"FROM {self.events_table_name} " "WHERE originator_id=? "
)

 def construct_create_table_statements(self) -> List[str]:
 statement = (
 "CREATE TABLE IF NOT EXISTS "
 f"{self.events_table_name} ("
 "originator_id TEXT, "
 "originator_version INTEGER, "
 "topic TEXT, "
 "state BLOB, "
 "PRIMARY KEY "
 "(originator_id, originator_version)) "
 "WITHOUT ROWID"
)
 return [statement]

 def create_table(self) -> None:
 with self.datastore.transaction(commit=True) as c:
 for statement in self.create_table_statements:
 c.execute(statement)
 pass # for Coverage 5.5 bug with CPython 3.10.0rc1

[docs] def insert_events(self, stored_events: List[StoredEvent], **kwargs: Any) -> None:
 with self.datastore.transaction(commit=True) as c:
 self._insert_events(c, stored_events, **kwargs)

 def _insert_events(
 self,
 c: Cursor,
 stored_events: List[StoredEvent],
 **kwargs: Any,
) -> None:
 params = []
 for stored_event in stored_events:
 params.append(
 (
 stored_event.originator_id.hex,
 stored_event.originator_version,
 stored_event.topic,
 stored_event.state,
)
)
 c.executemany(self.insert_events_statement, params)

[docs] def select_events(
 self,
 originator_id: UUID,
 gt: Optional[int] = None,
 lte: Optional[int] = None,
 desc: bool = False,
 limit: Optional[int] = None,
) -> List[StoredEvent]:
 statement = self.select_events_statement
 params: List[Any] = [originator_id.hex]
 if gt is not None:
 statement += "AND originator_version>? "
 params.append(gt)
 if lte is not None:
 statement += "AND originator_version<=? "
 params.append(lte)
 statement += "ORDER BY originator_version "
 if desc is False:
 statement += "ASC "
 else:
 statement += "DESC "
 if limit is not None:
 statement += "LIMIT ? "
 params.append(limit)
 stored_events = []
 with self.datastore.transaction() as c:
 c.execute(statement, params)
 for row in c.fetchall():
 stored_events.append(
 StoredEvent(
 originator_id=UUID(row["originator_id"]),
 originator_version=row["originator_version"],
 topic=row["topic"],
 state=row["state"],
)
)
 pass # for Coverage 5.5 bug with CPython 3.10.0rc1
 return stored_events

[docs]class SQLiteApplicationRecorder(
 SQLiteAggregateRecorder,
 ApplicationRecorder,
):
[docs] def __init__(
 self,
 datastore: SQLiteDatastore,
 events_table_name: str = "stored_events",
):
 super().__init__(datastore, events_table_name)
 self.select_max_notification_id_statement = (
 f"SELECT MAX(rowid) FROM {self.events_table_name}"
)
 self.select_notifications_statement = (
 f"SELECT rowid, * FROM {self.events_table_name} "
 "WHERE rowid>=? ORDER BY rowid LIMIT ?"
)

 def construct_create_table_statements(self) -> List[str]:
 statement = (
 "CREATE TABLE IF NOT EXISTS "
 f"{self.events_table_name} ("
 "originator_id TEXT, "
 "originator_version INTEGER, "
 "topic TEXT, "
 "state BLOB, "
 "PRIMARY KEY "
 "(originator_id, originator_version))"
)
 return [statement]

[docs] def select_notifications(self, start: int, limit: int) -> List[Notification]:
 """
 Returns a list of event notifications
 from 'start', limited by 'limit'.
 """
 notifications = []
 with self.datastore.transaction() as c:
 c.execute(self.select_notifications_statement, [start, limit])
 for row in c.fetchall():
 notifications.append(
 Notification(
 id=row["rowid"],
 originator_id=UUID(row["originator_id"]),
 originator_version=row["originator_version"],
 topic=row["topic"],
 state=row["state"],
)
)
 pass # for Coverage 5.5 bug with CPython 3.10.0rc1
 return notifications

[docs] def max_notification_id(self) -> int:
 """
 Returns the maximum notification ID.
 """
 with self.datastore.transaction() as c:
 c.execute(self.select_max_notification_id_statement)
 max_id = c.fetchone()[0] or 0
 return max_id

[docs]class SQLiteProcessRecorder(
 SQLiteApplicationRecorder,
 ProcessRecorder,
):
[docs] def __init__(
 self,
 datastore: SQLiteDatastore,
 events_table_name: str = "stored_events",
):
 super().__init__(datastore, events_table_name)
 # noinspection SqlResolve
 self.insert_tracking_statement = "INSERT INTO tracking VALUES (?,?)"
 self.select_max_tracking_id_statement = (
 "SELECT MAX(notification_id) FROM tracking WHERE application_name=?"
)

 def construct_create_table_statements(self) -> List[str]:
 statements = super().construct_create_table_statements()
 statements.append(
 "CREATE TABLE IF NOT EXISTS tracking ("
 "application_name text, "
 "notification_id int, "
 "PRIMARY KEY "
 "(application_name, notification_id)) "
 "WITHOUT ROWID"
)
 return statements

[docs] def max_tracking_id(self, application_name: str) -> int:
 params = [application_name]
 with self.datastore.transaction() as c:
 c.execute(self.select_max_tracking_id_statement, params)
 max_id = c.fetchone()[0] or 0
 return max_id

 def _insert_events(
 self,
 c: Cursor,
 stored_events: List[StoredEvent],
 **kwargs: Any,
) -> None:
 super()._insert_events(c, stored_events, **kwargs)
 tracking: Optional[Tracking] = kwargs.get("tracking", None)
 if tracking is not None:
 c.execute(
 self.insert_tracking_statement,
 (
 tracking.application_name,
 tracking.notification_id,
),
)

[docs]class Factory(InfrastructureFactory):
 SQLITE_DBNAME = "SQLITE_DBNAME"
 SQLITE_LOCK_TIMEOUT = "SQLITE_LOCK_TIMEOUT"
 CREATE_TABLE = "CREATE_TABLE"

[docs] def __init__(self, application_name: str, env: Mapping):
 super().__init__(application_name, env)
 db_name = self.getenv(self.SQLITE_DBNAME)
 if not db_name:
 raise EnvironmentError(
 "SQLite database name not found "
 "in environment with key "
 f"'{self.SQLITE_DBNAME}'"
)

 lock_timeout_str = (self.getenv(self.SQLITE_LOCK_TIMEOUT) or "").strip() or None

 lock_timeout: Optional[int] = None
 if lock_timeout_str is not None:
 try:
 lock_timeout = int(lock_timeout_str)
 except ValueError:
 raise EnvironmentError(
 f"SQLite environment value for key "
 f"'{self.SQLITE_LOCK_TIMEOUT}' is invalid. "
 f"If set, an int or empty string is expected: "
 f"'{lock_timeout_str}'"
)

 self.datastore = SQLiteDatastore(db_name=db_name, lock_timeout=lock_timeout)

[docs] def aggregate_recorder(self, purpose: str = "events") -> AggregateRecorder:
 events_table_name = "stored_" + purpose
 recorder = SQLiteAggregateRecorder(
 datastore=self.datastore,
 events_table_name=events_table_name,
)
 if self.env_create_table():
 recorder.create_table()
 return recorder

[docs] def application_recorder(self) -> ApplicationRecorder:
 recorder = SQLiteApplicationRecorder(datastore=self.datastore)
 if self.env_create_table():
 recorder.create_table()
 return recorder

[docs] def process_recorder(self) -> ProcessRecorder:
 recorder = SQLiteProcessRecorder(datastore=self.datastore)
 if self.env_create_table():
 recorder.create_table()
 return recorder

 def env_create_table(self) -> bool:
 default = "yes"
 return bool(strtobool(self.getenv(self.CREATE_TABLE, default) or default))

 Source code for eventsourcing.system

from abc import ABC, abstractmethod
from collections import defaultdict
from threading import Event, Lock, Thread
from typing import (
 Dict,
 Iterable,
 Iterator,
 List,
 Optional,
 Set,
 Tuple,
 Type,
 TypeVar,
)

from eventsourcing.application import Application, NotificationLog, Section
from eventsourcing.domain import Aggregate, AggregateEvent
from eventsourcing.persistence import (
 Mapper,
 Notification,
 ProcessRecorder,
 Tracking,
)
from eventsourcing.utils import get_topic, resolve_topic

[docs]class ProcessEvent:
 """
 Keeps together a :class:`~eventsourcing.persistence.Tracking`
 object, which represents the position of a domain event notification
 in the notification log of a particular application, and the
 new domain events that result from processing that notification.
 """

[docs] def __init__(self, tracking: Optional[Tracking] = None):
 """
 Initalises the process event with the given tracking object.
 """
 self.tracking = tracking
 self.events: List[AggregateEvent] = []

[docs] def save(self, *aggregates: Aggregate) -> None:
 """
 Collects pending domain events from the given aggregate.
 """
 for aggregate in aggregates:
 self.events += aggregate.collect_events()

[docs]class Follower(Application):
 """
 Extends the :class:`~eventsourcing.application.Application` class
 by using a process recorder as its application recorder, by keeping
 track of the applications it is following, and pulling and processing
 new domain event notifications through its :func:`policy` method.
 """

[docs] def __init__(self) -> None:
 super().__init__()
 self.readers: Dict[
 str,
 Tuple[
 NotificationLogReader,
 Mapper[AggregateEvent],
],
] = {}
 self.recorder: ProcessRecorder

[docs] def construct_recorder(self) -> ProcessRecorder:
 """
 Constructs and returns a :class:`~eventsourcing.persistence.ProcessRecorder`
 for the application to use as its application recorder.
 """
 return self.factory.process_recorder()

[docs] def follow(self, name: str, log: NotificationLog) -> None:
 """
 Constructs a notification log reader and a mapper for
 the named application, and adds them to its collection
 of readers.
 """
 assert isinstance(self.recorder, ProcessRecorder)
 reader = NotificationLogReader(log)
 mapper = self.construct_mapper(name)
 self.readers[name] = (reader, mapper)

[docs] def pull_and_process(self, name: str) -> None:
 """
 Pulls and processes unseen domain event notifications
 from the notification log reader of the names application.

 Converts received event notifications to domain
 event objects, and then calls the :func:`policy`
 with a new :class:`ProcessEvent` object which
 contains a :class:`~eventsourcing.persistence.Tracking`
 object that keeps track of the name of the application
 and the position in its notification log from which the
 domain event notification was pulled. The policy will
 save aggregates to the process event object, using its
 :func:`~ProcessEvent.save` method, which collects pending
 domain events using the aggregates'
 :func:`~eventsourcing.domain.Aggregate.collect_events`
 method, and the process event object will then be recorded
 by calling the :func:`record` method.
 """
 reader, mapper = self.readers[name]
 start = self.recorder.max_tracking_id(name) + 1
 for notification in reader.select(start=start):
 domain_event = mapper.to_domain_event(notification)
 process_event = ProcessEvent(
 Tracking(
 application_name=name,
 notification_id=notification.id,
)
)
 self.policy(
 domain_event,
 process_event,
)
 self.record(process_event)

[docs] @abstractmethod
 def policy(
 self,
 domain_event: AggregateEvent,
 process_event: ProcessEvent,
) -> None:
 """
 Abstract domain event processing policy method. Must be
 implemented by event processing applications. When
 processing the given domain event, event processing
 applications must use the :func:`~ProcessEvent.save`
 method of the given process event object (instead of
 the application's :func:`~eventsourcing.application.Application.save`
 method) to collect pending events from changed aggregates,
 so that the new domain events will be recorded atomically
 with tracking information about the position of the given
 domain event's notification.
 """

[docs] def record(self, process_event: ProcessEvent) -> None:
 """
 Records given process event in the application's process recorder.
 """
 self.events.put(
 **process_event.__dict__,
)
 self.notify(process_event.events)

[docs]class Promptable(ABC):
 """
 Abstract base class for "promptable" objects.
 """

[docs] @abstractmethod
 def receive_prompt(self, leader_name: str) -> None:
 """
 Receives the name of leader that has new domain
 event notifications.
 """

[docs]class Leader(Application):
 """
 Extends the :class:`~eventsourcing.application.Application`
 class by also being responsible for keeping track of
 followers, and prompting followers when there are new
 domain event notifications to be pulled and processed.
 """

[docs] def __init__(self) -> None:
 super().__init__()
 self.followers: List[Promptable] = []

[docs] def lead(self, follower: Promptable) -> None:
 """
 Adds given follower to a list of followers.
 """
 self.followers.append(follower)

[docs] def notify(self, new_events: List[AggregateEvent]) -> None:
 """
 Extends the application :func:`~eventsourcing.application.Application.notify`
 method by calling :func:`prompt_followers` whenever new events have just
 been saved.
 """
 super().notify(new_events)
 if len(new_events):
 self.prompt_followers()

[docs] def prompt_followers(self) -> None:
 """
 Prompts followers by calling their :func:`~Promptable.receive_prompt`
 methods with the name of the application.
 """
 name = self.__class__.__name__
 for follower in self.followers:
 follower.receive_prompt(name)

[docs]class ProcessApplication(Leader, Follower, ABC):
 """
 Base class for event processing applications
 that are both "leaders" and followers".
 """

[docs]class System:
 """
 Defines a system of applications.
 """

[docs] def __init__(
 self,
 pipes: Iterable[Iterable[Type[Application]]],
):
 nodes: Dict[str, Type[Application]] = {}
 edges: Set[Tuple[str, str]] = set()
 # Build nodes and edges.
 for pipe in pipes:
 follower_cls = None
 for cls in pipe:
 nodes[cls.__name__] = cls
 if follower_cls is None:
 follower_cls = cls
 else:
 leader_cls = follower_cls
 follower_cls = cls
 edges.add(
 (
 leader_cls.__name__,
 follower_cls.__name__,
)
)

 self.edges = list(edges)
 self.nodes: Dict[str, str] = {}
 for name in nodes:
 topic = get_topic(nodes[name])
 self.nodes[name] = topic
 # Identify leaders and followers.
 self.follows: Dict[str, List[str]] = defaultdict(list)
 self.leads: Dict[str, List[str]] = defaultdict(list)
 for edge in edges:
 self.leads[edge[0]].append(edge[1])
 self.follows[edge[1]].append(edge[0])

 # Check followers are followers.
 for name in self.follows:
 if not issubclass(nodes[name], Follower):
 raise TypeError("Not a follower class: %s" % nodes[name])

 # Check each process is a process application class.
 for name in self.processors:
 if not issubclass(nodes[name], ProcessApplication):
 raise TypeError("Not a process application class: %s" % nodes[name])

 @property
 def leaders(self) -> Iterable[str]:
 return self.leads.keys()

 @property
 def leaders_only(self) -> Iterable[str]:
 for name in self.leads.keys():
 if name not in self.follows:
 yield name

 @property
 def followers(self) -> Iterable[str]:
 return self.follows.keys()

 @property
 def processors(self) -> Iterable[str]:
 return set(self.leaders).intersection(self.followers)

 def get_app_cls(self, name: str) -> Type[Application]:
 cls = resolve_topic(self.nodes[name])
 assert issubclass(cls, Application)
 return cls

 def leader_cls(self, name: str) -> Type[Leader]:
 cls = self.get_app_cls(name)
 if issubclass(cls, Leader):
 return cls
 else:
 cls = type(
 cls.__name__,
 (Leader, cls),
 {},
)
 assert issubclass(cls, Leader)
 return cls

 def follower_cls(self, name: str) -> Type[Follower]:
 cls = self.get_app_cls(name)
 assert issubclass(cls, Follower)
 return cls

A = TypeVar("A")

[docs]class Runner(ABC):
 """
 Abstract base class for system runners.
 """

[docs] def __init__(self, system: System):
 self.system = system
 self.is_started = False

[docs] @abstractmethod
 def start(self) -> None:
 """
 Starts the runner.
 """
 if self.is_started:
 raise RunnerAlreadyStarted()
 self.is_started = True

[docs] @abstractmethod
 def stop(self) -> None:
 """
 Stops the runner.
 """

[docs] @abstractmethod
 def get(self, cls: Type[A]) -> A:
 """
 Returns an application instance for given application class.
 """

[docs]class RunnerAlreadyStarted(Exception):
 """
 Raised when runner is already started.
 """

[docs]class SingleThreadedRunner(Runner, Promptable):
 """
 Runs a :class:`System` in a single thread.
 A single threaded runner is a runner, and so implements the
 :func:`start`, :func:`stop`, and :func:`get` methods.
 A single threaded runner is also a :class:`Promptable` object, and
 implements the :func:`receive_prompt` method by collecting prompted
 names.
 """

[docs] def __init__(self, system: System):
 """
 Initialises runner with the given :class:`System`.
 """
 super().__init__(system)
 self.apps: Dict[str, Application] = {}
 self.prompts_received: List[str] = []
 self.is_prompting = False

[docs] def start(self) -> None:
 """
 Starts the runner.
 The applications are constructed, and setup to lead and follow
 each other, according to the system definition.
 The followers are setup to follow the applications they follow
 (have a notification log reader with the notification log of the
 leader), and their leaders are setup to lead the runner itself
 (send prompts).
 """

 super().start()

 # Construct followers.
 for name in self.system.followers:
 self.apps[name] = self.system.follower_cls(name)()

 # Construct leaders.
 for name in self.system.leaders_only:
 self.apps[name] = self.system.leader_cls(name)()

 # Lead and follow.
 for edge in self.system.edges:
 leader = self.apps[edge[0]]
 follower = self.apps[edge[1]]
 assert isinstance(leader, Leader)
 assert isinstance(follower, Follower)
 leader.lead(self)
 follower.follow(leader.__class__.__name__, leader.log)

[docs] def receive_prompt(self, leader_name: str) -> None:
 """
 Receives prompt by appending name of
 leader to list of prompted names.
 Unless this method has previously been called but not
 yet returned, it will then proceed to forward the prompts
 received to its application by calling the application's
 :func:`~Follower.pull_and_process` method for each prompted name.
 """
 if leader_name not in self.prompts_received:
 self.prompts_received.append(leader_name)
 if not self.is_prompting:
 self.is_prompting = True
 while self.prompts_received:
 prompt = self.prompts_received.pop(0)
 for name in self.system.leads[prompt]:
 follower = self.apps[name]
 assert isinstance(follower, Follower)
 follower.pull_and_process(prompt)
 self.is_prompting = False

[docs] def stop(self) -> None:
 self.apps.clear()

[docs] def get(self, cls: Type[A]) -> A:
 app = self.apps[cls.__name__]
 assert isinstance(app, cls)
 return app

[docs]class MultiThreadedRunner(Runner):
 """
 Runs a :class:`System` with a :class:`MultiThreadedRunnerThread` for each
 follower in the system definition.
 It is a runner, and so implements the :func:`start`, :func:`stop`,
 and :func:`get` methods.
 """

[docs] def __init__(self, system: System):
 """
 Initialises runner with the given :class:`System`.
 """
 super().__init__(system)
 self.apps: Dict[str, Application] = {}
 self.threads: Dict[str, MultiThreadedRunnerThread] = {}
 self.is_stopping = Event()

[docs] def start(self) -> None:
 """
 Starts the runner.

 A multi-threaded runner thread is started for each
 'follower' application in the system, and constructs
 an instance of each non-follower leader application in
 the system. The followers are then setup to follow the
 applications they follow (have a notification log reader
 with the notification log of the leader), and their leaders
 are setup to lead the follower's thead (send prompts).
 """
 super().start()

 # Construct followers.
 for name in self.system.followers:
 app_class = self.system.follower_cls(name)
 thread = MultiThreadedRunnerThread(
 app_class=app_class,
 is_stopping=self.is_stopping,
)
 self.threads[name] = thread
 thread.start()
 if (not thread.is_running.wait(timeout=5)) or thread.has_stopped.is_set():
 self.stop()
 raise Exception(f"Thread for '{app_class.__name__}' failed to start")
 self.apps[name] = thread.app

 # Construct non-follower leaders.
 for name in self.system.leaders_only:
 app = self.system.leader_cls(name)()
 self.apps[name] = app

 # Lead and follow.
 for edge in self.system.edges:
 leader = self.apps[edge[0]]
 follower = self.apps[edge[1]]
 assert isinstance(leader, Leader)
 assert isinstance(follower, Follower)
 follower.follow(leader.__class__.__name__, leader.log)
 thread = self.threads[edge[1]]
 leader.lead(thread)

[docs] def stop(self) -> None:
 self.is_stopping.set()
 for thread in self.threads.values():
 thread.is_prompted.set()
 thread.join()

 @property
 def has_stopped(self) -> bool:
 return all([t.has_stopped.is_set() for t in self.threads.values()])

[docs] def get(self, cls: Type[A]) -> A:
 app = self.apps[cls.__name__]
 assert isinstance(app, cls)
 return app

[docs]class MultiThreadedRunnerThread(Promptable, Thread):
 """
 Runs one process application for a
 :class:`~eventsourcing.system.MultiThreadedRunner`.

 A multi-threaded runner thread is a :class:`~eventsourcing.system.Promptable`
 object, and implements the :func:`receive_prompt` method by collecting
 prompted names and setting its threading event 'is_prompted'.

 A multi-threaded runner thread is a Python :class:`threading.Thread` object,
 and implements the thread's :func:`run` method by waiting until the
 'is_prompted' event has been set and then calling its process application's
 :func:`~eventsourcing.system.Follower.pull_and_process`
 method once for each prompted name. It is expected that
 the process application will have been set up by the runner
 with a notification log reader from which event notifications
 will be pulled.
 """

[docs] def __init__(
 self,
 app_class: Type[Follower],
 is_stopping: Event,
):
 super().__init__()
 self.app_class = app_class
 self.is_stopping = is_stopping
 self.has_stopped = Event()
 self.has_errored = Event()
 self.is_prompted = Event()
 self.prompted_names: List[str] = []
 self.prompted_names_lock = Lock()
 self.setDaemon(True)
 self.is_running = Event()

[docs] def run(self) -> None:
 """
 Begins by constructing an application instance from
 given application class and then loops forever until
 stopped. The loop blocks on waiting for the 'is_prompted'
 event to be set, then forwards the prompts already received
 to its application by calling the application's
 :func:`~Follower.pull_and_process` method for each prompted name.
 """
 try:
 self.app: Follower = self.app_class()
 except Exception:
 self.has_errored.set()
 self.has_stopped.set()
 raise
 finally:
 self.is_running.set() # pragma: no cover
 # -----------------------^ weird branch coverage thing with Python 3.9

 try:
 while True:
 self.is_prompted.wait()
 if self.is_stopping.is_set():
 self.has_stopped.set()
 break
 with self.prompted_names_lock:
 prompted_names = self.prompted_names
 self.prompted_names = []
 self.is_prompted.clear()
 for name in prompted_names:
 self.app.pull_and_process(name)
 except Exception:
 self.has_errored.set()
 self.has_stopped.set()
 self.is_stopping.is_set()
 raise

[docs] def receive_prompt(self, leader_name: str) -> None:
 """
 Receives prompt by appending name of
 leader to list of prompted names.
 """
 with self.prompted_names_lock:
 if leader_name not in self.prompted_names:
 self.prompted_names.append(leader_name)
 self.is_prompted.set()

[docs]class NotificationLogReader:
 """
 Reads domain event notifications from a notification log.
 """

 DEFAULT_SECTION_SIZE = 10

[docs] def __init__(
 self,
 notification_log: NotificationLog,
 section_size: int = DEFAULT_SECTION_SIZE,
):
 """
 Initialises a reader with the given notification log,
 and optionally a section size integer which determines
 the requested number of domain event notifications in
 each section retrieved from the notification log.
 """
 self.notification_log = notification_log
 self.section_size = section_size

[docs] def read(self, *, start: int) -> Iterator[Notification]:
 """
 Returns a generator that yields event notifications
 from the reader's notification log, starting from
 given start position (a notification ID).

 This method traverses the linked list of sections presented by
 a notification log, and yields the individual event notifications
 that are contained in each section. When all the event notifications
 from a section have been yielded, the reader will retrieve the next
 section, and continue yielding event notification until all subsequent
 event notifications in the notification log from the start position
 have been yielded.
 """
 section_id = "{},{}".format(start, start + self.section_size - 1)
 while True:
 section: Section = self.notification_log[section_id]
 for item in section.items:
 # Todo: Reintroduce if supporting
 # sections with regular alignment?
 # if item.id < start:
 # continue
 yield item
 if section.next_id is None:
 break
 else:
 section_id = section.next_id

[docs] def select(self, *, start: int) -> Iterator[Notification]:
 """
 Returns a generator that yields event notifications
 from the reader's notification log, starting from
 given start position (a notification ID).

 This method selects a limited list of notifications from a
 notification log and yields event notifications individually.
 When all the event notifications in the list are yielded,
 the reader will retrieve another list, and continue yielding
 event notification until all subsequent event notifications
 in the notification log from the start position have been
 yielded.
 """
 while True:
 notifications = self.notification_log.select(start, self.section_size)
 for notification in notifications:
 yield notification
 if len(notifications) < self.section_size:
 break
 else:
 start = notifications[-1].id + 1

 Source code for eventsourcing.utils

import importlib
import sys
from functools import wraps
from inspect import isfunction
from random import random
from time import sleep
from types import FunctionType, ModuleType, WrapperDescriptorType
from typing import Any, Callable, Dict, Sequence, Type, Union, no_type_check

[docs]def get_topic(cls: type) -> str:
 """
 Returns a string that locates the given class.
 """
 topic = f"{cls.__module__}:{cls.__qualname__}"
 _objs_cache[topic] = cls
 return topic

Todo: Implement substitutions, so classes can be moved to another module.
[docs]def resolve_topic(topic: str) -> Any:
 """
 Returns an object located by the given string.
 """
 try:
 obj = _objs_cache[topic]
 except KeyError:
 module_name, _, class_name = topic.partition(":")
 module = get_module(module_name)
 obj = resolve_attr(module, class_name)
 _objs_cache[topic] = obj
 return obj

_objs_cache: Dict[str, Any] = {}

def get_module(module_name: str) -> ModuleType:
 try:
 module = _modules_cache[module_name]
 except KeyError:
 module = importlib.import_module(module_name)
 _modules_cache[module_name] = module
 return module

_modules_cache: Dict[str, Any] = {}

def resolve_attr(obj: Any, path: str) -> Any:
 if not path:
 return obj
 else:
 head, _, tail = path.partition(".")
 obj = getattr(obj, head)
 return resolve_attr(obj, tail)

[docs]def retry(
 exc: Union[Type[Exception], Sequence[Type[Exception]]] = Exception,
 max_attempts: int = 1,
 wait: float = 0,
 stall: float = 0,
 verbose: bool = False,
) -> Callable:
 """
 Retry decorator.

 :param exc: List of exceptions that will cause the call to be retried if raised.
 :param max_attempts: Maximum number of attempts to try.
 :param wait: Amount of time to wait before retrying after an exception.
 :param stall: Amount of time to wait before the first attempt.
 :param verbose: If True, prints a message to STDOUT when retries occur.
 :return: Returns the value returned by decorated function.
 """

 @no_type_check
 def _retry(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 if stall:
 sleep(stall)
 attempts = 0
 while True:
 try:
 return func(*args, **kwargs)
 except exc as e:
 attempts += 1
 if max_attempts is None or attempts < max_attempts:
 sleep(wait * (1 + 0.1 * (random() - 0.5)))
 else:
 # Max retries exceeded.
 raise e

 return wrapper

 # If using decorator in bare form, the decorated
 # function is the first arg, so check 'exc'.
 if isfunction(exc):
 # Remember the given function.
 _func = exc
 # Set 'exc' to a sensible exception class for _retry().
 exc = Exception
 # Wrap and return.
 return _retry(func=_func)
 else:
 # Check decorator args, and return _retry,
 # to be called with the decorated function.
 if isinstance(exc, (list, tuple)):
 for _exc in exc:
 if not (isinstance(_exc, type) and issubclass(_exc, Exception)):
 raise TypeError("not an exception class: {}".format(_exc))
 else:
 if not (isinstance(exc, type) and issubclass(exc, Exception)):
 raise TypeError("not an exception class: {}".format(exc))
 if not isinstance(max_attempts, int):
 raise TypeError("'max_attempts' must be an int: {}".format(max_attempts))
 if not isinstance(wait, (float, int)):
 raise TypeError("'wait' must be a float: {}".format(max_attempts))
 if not isinstance(stall, (float, int)):
 raise TypeError("'stall' must be a float: {}".format(max_attempts))
 return _retry

[docs]def strtobool(val: str) -> bool:
 """Convert a string representation of truth to True or False.

 True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
 are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if
 'val' is anything else.
 """
 if not isinstance(val, str):
 raise TypeError(f"{val} is not a str")
 val = val.lower()
 if val in ("y", "yes", "t", "true", "on", "1"):
 return True
 elif val in ("n", "no", "f", "false", "off", "0"):
 return False
 else:
 raise ValueError("invalid truth value %r" % (val,))

def is_py310() -> bool:
 return sys.version_info[0:2] == (3, 10)

def get_method_name(method: Union[FunctionType, WrapperDescriptorType]) -> str:
 return is_py310() and method.__qualname__ or method.__name__

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Event Sourcing in Python

 		
 Introduction

 		
 What is event sourcing?

 		
 This library

 		
 Features

 		
 Design overview

 		
 Register issues

 		
 Installation guide

 		
 Install options

 		
 Developers

 		
 Support options

 		
 Professional support

 		
 Training workshops

 		
 Community support

 		
 Support the project

 		
 domain — Domain models

 		
 Aggregates in DDD

 		
 Event-sourced aggregates

 		
 Aggregate base class

 		
 Creating new aggregates

 		
 Triggering subsequent events

 		
 Collecting pending events

 		
 Basic example

 		
 Domain events

 		
 Snapshots

 		
 Initial Version Number

 		
 Versioning

 		
 Namespaced IDs

 		
 Declarative syntax

 		
 Create new aggregate by calling the aggregate class directly

 		
 Using the init method to define the created event class

 		
 Dataclass-style init methods

 		
 Declaring the created event class name

 		
 Defining the aggregate ID

 		
 The @event decorator

 		
 Inferring the event class name from the method name

 		
 The World aggregate class revisited

 		
 The Page and Index aggregates revisited

 		
 Non-trivial command methods

 		
 Raising exceptions in the body of decorated methods

 		
 The @aggregate decorator

 		
 Topics

 		
 Classes

 		
 application — Applications

 		
 Domain-driven design

 		
 Application objects

 		
 Basic example

 		
 Repository

 		
 Notification log

 		
 Snapshotting

 		
 Enabling snapshotting

 		
 Taking snapshots

 		
 Automatic snapshotting

 		
 Configuring persistence

 		
 Registering custom transcodings

 		
 Encryption and compression

 		
 Saving multiple aggregates

 		
 Classes

 		
 persistence — Infrastructure

 		
 Transcoder

 		
 Transcodings

 		
 Stored event objects

 		
 Mapper

 		
 Encryption

 		
 Compression

 		
 Notification objects

 		
 Tracking objects

 		
 Recorder

 		
 Event store

 		
 Infrastructure factory

 		
 SQLite

 		
 PostgreSQL

 		
 Classes

 		
 system — Event-driven systems

 		
 System of applications

 		
 Single-threaded runner

 		
 Multi-threaded runner

 		
 Classes

 		
 interface — Interface

 		
 Classes

 		
 Examples

 		
 Bank accounts

 		
 Cargo shipping

 		
 Release notes

 		
 Version 9.x

 		
 Version 9.1.3 (released 8 October 2021)

 		
 Version 9.1.2 (released 1 October 2021)

 		
 Version 9.1.1 (released 20 August 2021)

 		
 Version 9.1.0 (released 18 August 2021)

 		
 Version 9.0.3 (released 17 May 2021)

 		
 Version 9.0.2 (released 16 April 2021)

 		
 Version 9.0.1 (released 29 March 2021)

 		
 Version 9.0.0 (released 13 March 2021)

 		
 Version 8.x

 		
 Version 8.3.0 (released 9 January 2021)

 		
 Version 8.2.5 (released 22 Dec 2020)

 		
 Version 8.2.4 (released 12 Nov 2020)

 		
 Version 8.2.3 (released 19 May 2020)

 		
 Version 8.2.2 (released 16 May 2020)

 		
 Version 8.2.1 (released 11 March 2020)

 		
 Version 8.2.0 (released 10 March 2020)

 		
 Version 8.1.0 (released 11 January 2020)

 		
 Version 8.0.0 (released 7 December 2019)

 		
 Version 7.x

 		
 Version 7.2.4 (released 9 Oct 2019)

 		
 Version 7.2.3 (released 9 Oct 2019)

 		
 Version 7.2.2 (released 6 Oct 2019)

 		
 Version 7.2.1 (released 6 Oct 2019)

 		
 Version 7.2.0 (released 1 Oct 2019)

 		
 Version 7.1.6 (released 2 Aug 2019)

 		
 Version 7.1.5 (released 26 Jul 2019)

 		
 Version 7.1.4 (released 10 Jul 2019)

 		
 Version 7.1.3 (released 4 Jul 2019)

 		
 Version 7.1.2 (released 26 Jun 2019)

 		
 Version 7.1.1 (released 21 Jun 2019)

 		
 Version 7.1.0 (released 11 Jun 2019)

 		
 Version 7.0.0 (released 21 Feb 2019)

 		
 Version 6.x

 		
 Version 6.2.0 (released 15 Jul 2018)

 		
 Version 6.2.0 (released 26 Jun 2018)

 		
 Version 6.1.0 (released 14 Jun 2018)

 		
 Version 6.0.0 (released 23 Apr 2018)

 		
 Version 5.x

 		
 Version 5.1.1 (released 4 Apr 2018)

 		
 Version 5.1.0 (released 16 Feb 2018)

 		
 Version 5.0.0 (released 24 Jan 2018)

 		
 Version 4.x

 		
 Version 4.0.0 (released 11 Dec 2017)

 		
 Version 3.x

 		
 Version 3.1.0 (released 23 Nov 2017)

 		
 Version 3.0.0 (released 25 May 2017)

 		
 Version 2.x

 		
 Version 2.1.1 (released 30 Mar 2017)

 		
 Version 2.1.0 (released 27 Mar 2017)

 		
 Version 2.0.0 (released 27 Mar 2017)

 		
 Version 1.x

 		
 Version 1.2.1 (released 23 Oct 2016)

 		
 Version 1.2.0 (released 23 Oct 2016)

 		
 Version 1.1.0 (released 19 Oct 2016)

 		
 Version 1.0.10 (released 5 Oct 2016)

 		
 Version 1.0.9 (released 17 Aug 2016)

 		
 Version 1.0.8 (released 30 Jul 2016)

 		
 Version 1.0.7 (released 13 Jul 2016)

 		
 Version 1.0.6 (released 7 Jul 2016)

 		
 Version 1.0.5 (released 1 Jul 2016)

 		
 Version 1.0.4 (released 30 Jun 2016)

 		
 Version 1.0.3 (released 30 Jun 2016)

 		
 Version 1.0.2 (released 8 Jun 2016)

 		
 Version 1.0.1 (released 7 Jun 2016)

 		
 Version 0.x

 		
 Version 0.9.4 (released 11 Feb 2016)

 		
 Version 0.9.3 (released 1 Dec 2015)

 		
 Version 0.9.2 (released 1 Dec 2015)

 		
 Version 0.9.1 (released 10 Nov 2015)

 		
 Version 0.9.0 (released 14 Sep 2015)

 		
 Version 0.8.4 (released 14 Sep 2015)

 		
 Version 0.8.3 (released 5 Sep 2015)

 		
 Version 0.8.2 (released 5 Sep 2015)

 		
 Version 0.8.1 (released 4 Sep 2015)

 		
 Version 0.8.0 (released 29 Aug 2015)

 		
 Version 0.7.0 (released 29 Aug 2015)

 		
 Version 0.6.0 (released 28 Aug 2015)

 		
 Version 0.5.0 (released 28 Aug 2015)

 		
 Version 0.4.0 (released 28 Aug 2015)

 		
 Version 0.3.0 (released 28 Aug 2015)

 		
 Version 0.2.0 (released 27 Aug 2015)

 		
 Version 0.1.0 (released 27 Aug 2015)

 		
 Version 0.0.1 (released 27 Aug 2015)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

